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METEORIC MATTER IN INTERPLANETARY SPACE

V. G. Fesenkov

ABSTRACT

The theoretical and observational data concerning -_

meteors and cosmic dust which give rise to zodiacal

light are reviewed. It is shown that this matter must

have its origin primarily within the solar system,

because the sun cannot capture interstellar matter.

The effect of hyperbolic meteors is investigated in

detail, and it is shown that their effect on zodiacal

light is negligible.

i

The author attempts to derive the distribution of

meteors within the solar system. It is assumed that

they have been captured by Jupiter and have disinte-

grated over several million years. It is found that

most cosmic matter, consisting of disintegration pro-

ducts of objects captured by Jupiter, must be located

in the orbital plane of Jupiter. It is shown that

approximately the same total mass of asteroidal matter

lies within each stellar magnitude. The reasons for

assuming that the solar system continuously accumulates
a dust-like substance are discussed.

The motion of a dust particle in space, subject

to the sun's attraction and light pressure, is studied.

The time required for a particle to fall into the sun

from any distance is computed. Due to the photoeffect,

the particle will accumulate a charge, which is found

not to influence its motion.

Stationary distribution of meteoric matter in space

is derived, based on the previously-discussed mechanisms _

of production and decay. The density distribution is i

inversely proportional to the distance from the sun.

The authors investigate the distribution of dust

outside the ecliptic, and expressions for the zodiacal

light isophotes are derived.

The nature of the earth's emmisive layer is in-

vestigated, as well as the light-scattering properties

of the troposphere. The problem of separating the galac-

tic and ionosphere components from observations of the

sky is discussed.



CHAPTERi

Data on Matter in Interplanetary Space

Cosmic space abounds in matter occurring in gaseous and dust-

like states. Clouds of cosmic dust are primarily concentrated in

the galactic plane. Some of them can be sharply distinguished on

the light background of the Milky Way, producing considerable

absorption and also scattering of light - which is more significant

for small wavelengths.

This scattering of light by the galactic dust-like matter pro-

duces the so-called galactic luminescence, which amounts to about

80% of the total stellar brightness toward the center of the galaxy,

and 30 - 60% in other directions (Ref. i, 2). Similar matter also

occupies our planetary system, accumulating primarily in the ecliptic

plane. Absorption in this material is barely noticeable, and its

scattering is also very small. Its scattering can be noticed on the

dark background of the night sky only due to its proximity to the

bright sun.

The energy distribution in the spectrum of this luminescence

does not differ at all from the spectrum of the sun itself (Ref. 3,

4, 5), as must be the case for particles which are large as compared

with the length of a light wave.

The conclusion can readily be drawn that separate particles of

this dust medium, entering the earth's atmosphere, can be observed

in the form of shooting stars.

We have not as yet made any assumptions with respect to the
structure of this medium. It can be stated that this medium con-

sists of individual meteor streams, representing the disintegration

product of comets or consisting of scattered dust clouds, and con-

tinuously encompasses interplanetary space.

In every case, each particle must describe an elliptical orbit

around the sun, independently from the others, if only the solar

repulsive force is not too great and does not cause such a particle

to escape in a rolling, spiral-like manner into interstellar space.

We are constantly encountering this phenomenon in the cosmic tails

of the second type. Sometimes explosions occur in the comet's

nuclei, and clouds of fine dust are scattered into space; they are

picked up by light pressure, enter into the comet tail, and then

leave the solar system. In every case, the particle dimensions of

the interplanetary dust medium have a lower limit which is caused

by the presence of solar light pressure and which is not,

* Note: Numbers in the margin indicate pagination in the original

foreign text.
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naturally, dependent on distance. This limit is determined by the

condition that a change in the impulse of the light pressure equals

the acceleration of gravity, i.e.,

4

k_Mo- -_ =p'__p_ E. r. t - -

CF, • F]

where E 0 is the solar constant at the distance r0, c - velocity of

light, p, 6, r - radius, density of the particle, and its distance

from the sun. Assuming that the particle density is i, we find a

limiting radius for it of approximately i_.

Such particles cannot be a constant component of the dust

medium in the solar system. If, in actuality, the smallest

particles have a radius on the order of i0_, then their mass will

be on the order of 10-Sgrams. According to the determination

made by Epik (Ref. 6), a meteor of the apparent magnitude m -

penetrating the earth's atmosphere at a mean velocity of 55 km/sec
- has the mass

M = 2.512-m'0.25 grams

This corresponds to the following meteor dimensions of

different apparent magnitudes m (density is assumed to be 3):

ip(mm) 2.7

2 4 6 8

1.47 0.79 0.43 [ 0.23

i0 12 13 14

0.13 0.068 0.050 0.037

I

Meteors which are produced by particles having extremely small

dimensions (i0_) must belong approximately to the 18th stellar

magnitude.

However, this limit must be considerably increased, in view of

the fact that particles having a dimension of several microns cannot

exist for a long period of time in the solar system. Due to light

deceleration, they must rapidly fall into the sun. Actually, in the

simplest case of circular motion the following expression can be

readily derived for a change in the momentum during the time dt:

d (my) = == P_"_° r_°dr,
cr J

v
where _ -- -- is the constant of annuaK aberration.

c

Thus, the following expression can be derived for a change in

the orbit radius as a result of radiative deceleration:

/5



dr 3 Eo _oo dt

-r- = 2 c_-p r 2

Thus, the time a particle takes to reach the sun is

c: p _ r=. 10--:t=

9 Eo ro_ years

If, for example, p = 10_ ffi 10 -2 ram, 6 = 1, r=r 0 = 1.5"1013 cm,

then t = 7"10 3 years - a quantity which is negligible as compared with the

amount of time the solar system has existed (Ref. 7, 8).

A mass of dust-like matter can therefore exist for a long

period of time, under the condition that the particles having the

same dimension are constantly replaced by new ones. Due to the

fact that they exist for a longer period of time, the larger

particles will tend to dominate. Therefore, it is difficult to

establish the upper limit of meteorite dimensions from theoretical

considerations.

Let us turn to observational data.

Statistics on telescopic meteors have produced some interesting

information. It has been found that the number of meteors increases

with each subsequent stellar magnitude, so that their total

mass remains approximately the same and equals Ii kilograms/day

(Ref. 9) for the entire terrestrial surface. After two billion years,

this forms a layer on the earth which is somewhat less than i cm thick.

This increase in the number of meteors has been ascertained to

the i0th stellar magnitude. Some researchers have expressed the

opinion (Watson) that the limiting magnitude of meteors which still

exist does not exceed the 13 th stellar magnitude. Particles having

similar dimensions can exist in the solar system for a comparatively

short period of time - on the order of hundreds of thousands of years

- if only they rotate around the sun along a closed orbit. In every

case, almost all particles in interplanetary dust mediums, with the

exception of the very small ones, can be observed in the form of

telescopic meteors, using present-day observational methods.

However, it must be stated that these meteors actually belong

to the solar system, and not to galactic space.

This can be proved in two different ways, namely: by investiga-

ting the velocity of individual meteors, on the one hand, and by

studying the photometric properties of all of them as a group, on the

other hand. Up until recently, the opinion prevailed that the

majority of meteors move at hyperbolic velocities with respect

to the sun (Hoffmeister, Nissl', Epik, and others [Ref. I0]). How-

ever, all of these conclusions were based on visual observations, which

/7
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were interpreted on the basis of arbitrary assumptions. When absolutely

objective photographic material was obtained, it was found that all of

the specific velocities corresponded to elliptical orbits.

A careful analysis of British observations of meteorites, which

was recently carried out by Porter.(Ref. ii), showed that only in

10% of the cases can one suspect hyperbolic velocities, and they are

problematical. In every case, an investigation of the velocities of

meteors and bolides did not reveal the presence of hyperbolic orbits.

This does not mean that there are absolutely no such orbits, but this

does mean that they do not play a significant role in any case in

the total balance of the dust medium in the solar system. The so-

called Taurid cosmic stream clearly exemplifies the incorrectness of

recent conclusions regarding meteor velocities.

On the basis of visual observations, Hoffmeister pointed out the

existence of a stream of cosmic meteors which are carried through the

solar system from dark nebulae in the Taurus constellation toward the

Scorpion constellation.

However, when a camera equipped with a device for determining

velocity was used at Harvard to photograph fourteen meteors belonging

to this stream, they were all found to have a period of rotation

around the sun of 3.3 years. According to a study by Uippl (Ref. 12),

they are related to the comet Enke which rotates around the sun along

a smaller orbit, and they have no relationship to the hyperbolic tra-

jectories which were assumed initially.

The photometric method is based on the following considerations.

Let us assume that a stream of meteors, which moves initially along

rectilinear and parallel trajectories, enters the solar system.

Each meteor describes a hyperbola around the sun; the greater the

curvature of the hyperbola, the closer it approaches the sun.

/8

It is possible to determine the amount of matter which passes

through a unit volume of space at each given moment - i.e., the den-

sity of the dust medium which is exclusively determined by hyper-
bolical orbits of cosmic meteors.

If this density is determined in relative units, it is possible

to calculate the brightness distribution of the dust medium along

both sides of the sun, and to compare it with observations. In the

case of the hypothetical stream of Hoffmeister, it is found that the

nature of the brightness distribution along both sides of the sun is

approximately the same, but the brightness itself differs sharply at

the same angular distances (Ref.13). For example, if we assume that

cosmic meteors have a rather large hyperbolic velocity, when the

semimajor axis a = - 0.I, we obtain the following for the brightness

of the eastern and western branches of zodiacal light in the same



units at different angular distances 1 from the sun:

l = 30 ° 1 = 60 °

Wes tern Branch 8.5 3.9

Eas tern Branch 4.4 i. 8

1 = 90 °

At a lower velocity, the difference between both branches will

be even larger. However, observations have shown that there is no

significant difference between the branches of zodiacal light.
This shows that there is no significant asymmetry in the spatial

distribution of matter. Thus, galactic streams of meteors, which

can exist only in a small number - if not singly - are either not

present, or do not play a significant mole in each case.

Thus, the interplanetary medium consists of meteors which

move almost exclusively along elliptical orbits. It is important

to know the distribution of these particles in terms of dimensions.

It has already been noted that, according to observations, the

total mass of meteors at each interval of stellar magnitude is

approximately the same.

Let A(m) be the number of shooting stars in the brightness

interval which is expressed in stellar magnitudes from

I i
m-_ to m + _; let A(m)dm be the number of shooting stars in the

1 _m.interval from m - _m to m + Let M(m) be the mass of a shooting

star whose brightness is m.

According to convention

A (m) M (m) = C = const.

Since the mass is proportional to the brightness - other con-

ditions being equal - we have

M = Mo-2.512-m,

where M 0 is the mass correspondin_ _o m -- 0.

Therefore, we have

and, consequently

We find:

m

P =po'2.512 a

t_

dp-- I po2.512---s-(in 2.512) din.
3

/9
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A (m) am = tP)ap -- 3 lg arp 
M_0.4_' pc

Thus, the distribution function _(p) of the number of meteors

with respect to dimensions is proportional to p-4. The number of

meteors rapidly increases with a decrease in their dimensions. The

deviation from this law is insignificant up to the 10th stellar

magnitude.

There is no doubt that very small particles predominate in the /i0

dust medium, but these particles cannot be long-lived. The dust

medium in the solar system exists for a short period of time. It

must either be trapped from interstellar space, or be generated within

the solar system in some way.

Many authors have expressed the opinion, and continue to express

this opinion, that the sun - when passing through any cosmic cloud -

can capture part of it. Thus, for example, Bobrovnikov - when attemp-
ting to explain the small lifetime of comets on the basis of the

capture theory - assumed that the sun captured part of the meteoric

matter from the region in space occupied by the Orion nebula approxi-

mately a million years ago.

A significant portion of the cosmogonical hypotheses - advanced

by Hoyle, Veytsekker, Schmidt - assume or substantiate such a

capture.

There is just one capture mechansim which has been known up to

the present; this is the mechanism of large perturbations. The

passing sun captures matter from interstellar space with the aid of

an additional planet body. By means of its attraction, this planet

can decrease the kinetic energy of the passing body and can make it

a satellite of the sun for a certain period of time. This mechanism

was studied in detail by Tisserand, Kallandro, G. N'yuton, and

others (Ref. 14). Tisserand (Ref. 15) set forth his well-known cri-

terion for the identity of a body before or after large perturbations:

±+ 21/ cosi=c,
a

where a is the semimajor axis; p - parameter; i - inclination; C -

constant in the Jacobi interval.

However, this process is unlikely. It is assumed that a foreign

body not only passes close to the sun, but also falls within the

sphere of influence of a planet - for example, Jupiter - in a definite

manner. It must be kept in mind that the body can again pass close to

Jupiter after a certain number of rotations; after undergoing large

perturbations, it can be ejected from the solar system.

7



This mechanism can play the role of changing long-perlod

comets into short-period comets. A family of comets can thus be

formed which have planetary orbits. However, this is not of

practical importance for bodies having a galactic origin. This

mechanism cannot play a significant role in the transformation of

cosmic meteor orbits.

In its rotation around the galactic center, can the sun capture

cosmic matter under any circumstances and cause it to rotate along

an elliptical orbit, the dimensions of which are rather small as

compared with the distance from the galactic center?

The distance to the galactic center is about 40,000 light years.

The distance from the earth to the sun in the same units equals

8m48 s. This is the time required by light to traverse the distance

between the sun and the earth. Thus, the distance from the sun to

the earth represents0.4-10 -9 of the distance to the galactic center.

Let us examine a mass which is concentrated in the galactic

center, the sun which rotates around it along a circular orbit, and

a third body having insignificant mass.

It can be shown (Ref. 16) that under these conditions the orbital

elements of this body, with respect to the sun, satisfy the same

criterion of Tisserand, only written in a somewhat different form:

i+ 2 = C- Co.,

The difference of the Jacobi constants C - C O is given in the

right part; C characterizes the orbit of the body, and C O characterizes

the orbit of the sun itself. Apparently, the most favorable conditions

for capture occur when the body moves along the same circular orbit as /12

the sun, but only slightly inclined. Thus, the convergence of both

bodies occurs with the least relative velocity. Since C = C O in this

case, we have:

1 F21/ cos/=O,
a

while

p = a (1 -- e2), cos i _ I.

As can be seen, the semimajor axis for the orbit of the body

with respect to the sun cannot under any conditions be small. As a

rule, it is found that a < 0.

Thus, it is absolutely impossible for the sun to capture inter-

stellar matter.

It can thus be shown that meteors of a planet system having

elliptical-type orbits cannot be captured by the galactic medium.

8



In the same way, planets from the solar system cannot surround them-

selves with meteoric matter during any perturbations in the movement
of counter meteoric streams.

Observations point exactly to this. For example, comets have

repeatedly passed around Jupiter at a very small distance from it,

and have undergone strong perturbations. However, we do not know of

one comet which rotates around Jupiter.

Meteoric satellites of the earth are equally impossible. The

only possible way for the earth to capture meteors is to decrease

their kinetic energy as a result of resistance produced by high

atmospheric layers. Under specific approach conditions, a

meteor passes at a very high altitude in the earth's atmosphere,

where the density is so small that it can penetrate the atmosphere

completely, only decreasing its kinetic energy. As a result, the

meteor describes an elliptical orbit around the earth, and by means

of rotation again returns to the previous atmospheric layer.

Disturbances from the moon can change the orbit slightly,
and can make the meteor a satellite of the earth after a certain

number of rotations (Ref. 17).

Thus, meteoric matter must belong to the solar system itself,

and in all probability is continuously produced in it. All of

this matter, scattering the solar light, produces the phenomenon

which is known as zodiacal light. This phenomenon was known to

the Egyptians in far antiquity, who drew it on their obelisks. It

has the form of a lens extending along the elliptical plane, in

the center of which the sun is located. The brightness of the

zodiacal light increases rapidly toward the sun, and also toward

the elliptical plane. The phenomenon of zodiacal light is

therefore represented in the form of light cones of the east or

west, depending on the position of the ecliptic with respect to

the horizon. Both cones are combined, in addition, by a continuous

zodiacal band which is very weak and indefinite, extending along

the ecliptic. At the side opposite the sun, this band significantly

intensifies the brightness in the form of an oval, turbid spot - the

so-called counterglow. The earth must be immersed in this matter,

and therefore zodiacal light is propagated in actuality along the

entire sky, somewhat increasing the luminosity of the night sky

(Ref. 18).

Let us now turn to the problem of interpreting the observed

brightness distribution in the zodiacal light. The separation of

the actual brightness of the zodiacal light itself from the total

brightness of the sky, which is primarily caused by the luminosity

of high ionosphere layers, is a difficult problem, but one which

can be solved.

/13
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Let _f(0) be the portion of scattered solar light produced by

a unit volume of dust medium at the distance r from the sun at the

angle d, between the incident and scattered rays. If ¢(0)dp repre-

sents the distribution function of particles with respect to the

dimension p and _(0)f(O, 0) characterizes scattering produced by

one particle (p), which is calculated per unit of solid angle,

then - assuming the distribution law of densities in the form r-n,

where n is the indefinite exponent - we find the following expression

for the observed brightness of zodiacal light in the ecliptic

plane (Ref. 19) :

j___J, sin nr°+ll S l*(_) O) (P) dia ! "/'(b'p) sinnOd_}'
pt

where _ is the angular scattering from the sun; j - illumination

from the sun; j - illumination from the zodiacal light.

Since the particles are large as compared with _, it can be

assumed that the scattering indicatrix f(0,0) does not depend on 0.

Therefore, we have

_=j,rOsinn+ll I W(p),(p)dpSf,(O)sin_OdO.
pt

It can be verified that the result depends slightly on the

nature of the function f(O). For very small particles, comparable

with the length of a light wave, f(O) has a very asymmetric form

in the propagation direction of an incident ray. For significant

dimensions, f(0) depends on the particle form. Diffraction

increases the scattering first; the presence of surface shading

decreases the scattering first. On the average, we can assume

that f(_) = const = i.

Utilizing the recurrence formula

Ssin"Od{) sinn-' _ co_ _ I'___n-- 1 [" .-- n- It.-J-_ J s,nn- '{}'dO,
l

we can calculate the second integral for any whole n.

The best agreement with observations is obtained for n = i.
We thus have:

j=: "° .(1 ' 0['_..... vcos (_)(I_(¢)do.
SillZl O

Drawing a comparison with observations which I carried out

in Kitaba in 1934 (Ref. 20), we have the following agreement between

observed and calculated brightnesses according to the given formula.

/14
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Observed ..........

Calculated ..........

30 °

7.62

7.45

40 °

5.05

4.28

50 °

3.20

2.81

60 °

2.10

2.00

90 °

i .00

1.00

This means that the density of matter in the ecliptic plane changes
according to the law r-I. There is actually no need to search for a

more exact law.

Other scattering indicatrices having a more complex form give

approximately the same results.

The following hypothesis can be formulated with respect to the

origin of meteors in the solar system.

Meteors are produced as the result of a gradual disintegration

of asteroids which primarily occupy the area between the orbits of

Mars and Jupiter. The disintegration can arise both due to collisions

with cosmic meteors, which are passing though the solar system at a

great velocity, due to collisions with meteors which belong to the

solar system, and due to collisions between asteroids. The total

mass of asteroids is small and may possibly not exceed 0.I of the

earth's mass. However, their total surface in all probability greatly

exceeds the surface of the earth, due to the extreme fractionation of

asteroids. If, for example, the earth is divided by equal bodies

having a radius which is ten times smaller, then the total surface of

these bodies will be ten times greater than the earth's surface. Con-

sequently, the surface sum of bodies having a radius of 6 km each,

which are obtained by dividing the earth, will be one thousand times

greater than the terrestrial surface. A body having a radius of 6 km

represents a rather typical asteroid which can be observed in modern /16

telescopes.

There is no doubt that an enormous majority of the asteroids

have small dimensions. In actuality, it is impossible to give any

real limit for their radius. They can have a radius of several meters,

even centimeters, down to the size of grains. Thus, the enormous

surface which the asteroidal ring represents is a primary obstacle

to the flight of cosmic meteors through the solar system. The fine

dust which is produced during these collisions scatters in all

directions, and fills space. In this connection, the following

problem can be formulated and solved.

Let a planet-asteroid move along a circular orbit at the distance

R from the sun. For a certain reason, particles of dust are emitted

from this planet uniformly in all directions, with a definite relative

ii



velocity. Let us assumethat this process occurred a long time
ago, so that a stationary density distribution has been established.
It is necessary to determine a relative amountof matter at any
point in space. As the result of lengthy calculations, as will be
shownbelow, the following density distribution law is obtained in
the plane of the asteroidal circle, for different values of the
emission velocity v0 and for different distances r from the sun.

TABLEi

• I" _2o=I 2 3 4 ,-_
I

0.2 [ 2.500.4 1.00
0.8 0.43

1.01 o.57.1.2 0.32

1.6 I 0.09

_'2.55

1.00
0.46

0_3

J. 20
1.00

0.31
OO

0.25
0.052

1.00
0.54

OO

1.24
0.41

2.00
1.00
0.,50
0.40

The orbit radius of the asteroid and its velocity are assumed /17

to equal unity. If it is assumed that the radius R = 4 astronomical units,

then - according to the third law of Kepler - we have

v2R =const, _ = c°ns---L

i.e., the orbital velocity, assumed to be unity, represents approxi-

mately 15 km/sec. The earth is located at a distance of 0.25

assumed units from the sun. It can be seen that in the region of space

around the earth's orbit the density of matter changes in close

accordance with the law r-l, at particle emission velocities of

v 0 = I - _. For large velocities, the density increase towards the

sun is slowed down, and then completely stops; close to the sun,
there is a vacuum.

In a manner similar to this, the vacuum close to the sun occurs

for small emission velocities. Consequently, it can be concluded

that the required density distribution is obtained during the mechanism

under consideration only for significant emission velocities confined

within rather narrow limits. However, it is interesting to note that

for all possible velocities, either large or small, the asteroidal

ring itself is always a region of increased density for the dust-like

matter. It thus definitely follows that a mass of fine dust must be

accumulated in the circle of asteroids; as can be imagined, this

explains the phenomenon of the zodiacal band. However, there is

reason to doubt the fact that the particle emission velocities can

be rather large.

We should point out that the results given above were obtained

12



without taking the radiative deceleration into account.
of large emission velocities disappears with such deceleration. In
addition, let particles continuously emergefrom the asteroidal zone,
just as from a reservoir, and let themgradually approach the sun as
the result of radiative deceleration. Let this process continue for
a rather long period of time - in fact, for the entire lifetime of
the solar system. Let us assumethat the distribution of matter
is in a stationary state. In this case, the amount of matter, loca-
ted in a volume of space which is traversed per unit of time, must
be everywhere the same- f.e.,

dr
t_r _ -_- f (r) = const,

where _ is a solid angle; f(r) is the density of matter in space.

dr

Substituting the value of _ which was given above, we find

that

f (r)= const.
r

Thus, the phenomenon of radiative deceleration leads to the

density distribution law r-l , in exact agreement with observations.

A p2 where A is the particle albedo, weAssuming that _(p) =5 '
find:

j__ j Kr_____o(1-]-¢0S/) _AA
sinS/ _,. "

If it is assumed that the brightness of the zodiacal light is

equivalent at a distance of Z = 60 ° to one star of the 5th magnitude
per square degree, then we have

The necessity

/18

= (1_0_).2 2.512-26z+s)= 8.2.lOr-*oj - .

For purposes of definition, let us assume that A = 0.4. The

mass of matter, per unit volume of space at the distance r = I,
will be:

P,

4=
M = K J"• (o) ap -£- p,_

P*

or

M =: 4 =:_K (In.% -- In PO.
3

Assuming m = 13 for the limiting stellar magnitude of the meteor,-
i.e.,

we find that

and therefore

/19

A4=6.10_ s degrees -
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the mass per I cm 3 at the distance from the earth to the sun.

The total mass in a region of space having a radius equalling

the radius of the earth's orbit is

1.3-I018 grams,

assuming that it has spherical symmetry according to the law of den-

sity change r-I. This amounts to 2.6"10 -10 of the earth's mass.

This represents the preliminary data on zodiacal matter, which

have been derived from our previous studies.

14
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CHAPTER 2

.Light Phenomena Representing Possible Streams of Hyperbolic

Meteors

As was indicated above, there is no basis for assuming that

cosmic meteors - penetrating the solar system at hyperbolic velo-

cities from interstellar space - beneficiate the interplanetary

dust medium in any significant way. In every case, such meteors

must belong to individual streams located primarily in the

galactic plane. According to Hoffmeister, the most pronounced

stream of this type is related to the region occupied by the dark

nebulae in the Taurus constellation, which is located close to

the ecliptic plane. Hoffmeister's conclusions cannot be regarded

as correct at the present time, since this stream has a comparatively

small heliocentric velocity. The opinion that there are hyperbolic

meteoric streams can be shown to be untenable from the photometric

aspect.

Let us examine the following general problem. Let a meteoric

stream, which has a uniform structure and is not limited in any

way, pass through the solar system. Located at a great distance

from the sun, each particle of the stream moves along parallel

trajectories at the same velocity v 0. The attraction from the sun

disturbs the structure of this stream. It is necessary to determine

the density of matter at any point in space, at a distance from the

sun which is not particularly large, and then to evaluate the light

phenomena for the observer on the earth.

Let us assume that the center of the sun is the origin, and a

straight line which is parallel to the initial stream velocity v 0

is the x-axis. Let the initial coordinates of the meteoric particle

be x 0 - ÷ _ and Y0- On the basis of the kinetic energy integral

r a (1)

we find the velocity v at any distance r from the sun. The ex-

pression

VO2"____ ks , .
a (2)

determines the actual semiaxis of the hyperbola a. The equation

for the particle trajectory in polar coordinates (r, 4) is
--algtq?

r=
1 -]- cosO+ tg# sin o ' (3)

where _ is the angle which the line of apsides forms with the

x-axis.
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In order to determine the angle _, which is apparently related

to the eccentricity, we shall employ the area integral which can be

written in the form

Yova=q_,

as applied to the orbit perihelion, which is located at the distance

q from the sun. Utilizing (i) and (3), we find:

yoVo=-- a (see _-- 1) _ -- a (sect-- l) ---a-'

from which it follows

and finally

or

_oVo2 = " ak'(sec'_-- 1),

sec + = 1/1 + yo_

¥

Y0 =-- a tg 4. (4)

Finally, the angle (n, r) between the normal to the trajectory

at the point (r, 0 ) and the radlus-vector is determined by the

relationship

dr

tg (n, r) = rd8 "

from which we find

COS (n, r) =

The parameter p has the value

r] r' sec' { sin' (_ -- 8) (5)+
p'

p=--a(e'--l) =--atg =4.

Let us now assume that the elementary rectangle 6xo6YO is

occupied by material particles which move independently of each other
under the influence of the sun's attraction. In a certain time

interval, this rectangle is deformed by the area 6_. We can find

the relationship
_a

_xo_y 0 '

which shows the expansion ratio of a plane element and, consequently,

the reduction ratio of the surface density in the x, y plane, as

compared with the initial value.

If 6t is the time interval in which a particle traverses the

segment 6x0, then we have

_x0 -----%_t.

/22
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Apparently, within an accuracy of a small quantity of a high order,
we have

where _n is the distance between contiguous trajectories, taken

along the normal. Therefore, we have

vBn
B =--

f)o_Yo

or

v_r cos (n, r)
B:

V_ 3'o

But on the basis of (3), we have

_ a_,-= cosec"¢ [2 (1+cos o)dg ++sin o] _,_,.
r

On the other hand, from (4) we have

_yo=- a seO _,.

After various transformations, we obtain:

_r ._ ar' [.v. sin 8 ]2 (1 -[-C°S _))

B=¢ 2---'t al al/-----ar:[yfin.yo, s --2,1-{-¢os0)] X

I
X

¢ )--- cos _ 4-- sin 8
1+ .yo4

or finally

' " ar'-I

a=L,'o

r"

¢,+#.'
(6)

Thus, B represents a function of polar coordinates r, 0, which is
k

= . However, for eachdependent on the parameters Y0 and v0 / - a

given point with given r, 0, the magnitude of Y0 must depend on v 0.

Actually, describing the trajectory equation in the form

y0'
r _

-- ail +cos _)+Yo sin 0
we obtain from it

/23
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]/F "_
rsin8 q_ sin'_ "_ ar (1 +cos O).

Yo-- 2 4 (7)

We place a positive sign before the radical, since it can always be

assumed that YO > O.

In order to change to the spatial density D, it is only

necessary to take into account the symmetry with respect to the
x-axis. The entire amount of matter which is included within the

torus

2 _Yo _Xo _Yo,

will also be included Within the torus 2_y6o during the same time

interval. Consequently, we have

O __Yo _y_v,
y _rv cos (n, r)

or

D = F (r, O, Vo)=.._,
while

v=rsin0.

In actuality, the fact must be taken into account that in

the x, y plane the elementary area 6x06Y0, corresponding to
Y0 > 0, can enter both the region of positive values of y, as

well as the region of negative values of y. Let us use D 1 and D 2
to designate the density values obtained respectively for

Y0Y > 0 and Y0Y < 0. In the final analysis, we have

D-=D,+D,= ! ('Y-°-I-Y':)

where B, Y0, B', Y0' correspond to the points r, 0, which are

located symmetrically with respect to the x-axis.

and

In the case of very small O, we have

yo= V
2

2a1 ---- r8
B: r

.... r

F1 (- 2a+o Fz--War)

from which it follows that

B=--- ]/Z 2arO '

-- 2a+_} 1/-- 2at

or

4 ar'

( ]/ _ ) 3 -_-3 ( ]/" Z-_d-r ) 2 r.___
2

4
.-{-

2 _.-_ 2ar+al}

Consequently, for O = 0 B -- 2, no matter what r may be.

On the other hand, for arbitrary O, but very small r, we have

18
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approximate ly

= V'r0 +cos o)

and after substitution in (6) we again find lim B = 2 for r = 0.

general, for
y0y>O

the values of B are included within the limits I _< B _< 2, and for

YoY< 0

within the limits of 2 _< B < _.

In

Let us apply these formulas to a specific case.

Let us use the radius of the earth's orbit as the unit of

length, and a portion of the earth's rotation around the sun as

the unit of time ! , which is equivalent to the assumption that
2_

k 2 = i.

We shall have

v2 i
0 a

Let us assume that the velocities of hyperbolic meteors amounts

to I00 km/sec, and above. In our units, this velocity equals

Vg--_-_100-365,24.24-60._ = 3_.
2-3,14-149500000

The following corresponds to this:

a =-- 0.083.

We shall use the following in round numbers:

a .... 0.1

and we shall calculate the values of B and D for different values

of r and _ Tables 2 and 3 present the results. Tables 4 and 5

present analogous values of B and D, calculated by V. A. Kurapov

for a = - 1.0. In the case a = - 0.I, the values of D are shown in

Figure I.

As can be seen from these Tables, the disturbing action of the

sun is much more intense and includes incomparably larger areas of

space when the moving particles have smaller kinetic energies.

Let us now calculate the brightness of the zodiacal light

produced by matter belonging to such a meteoric stream. Let L

represent the amount of light emitted by the sun per unit of solid

angle; _f(O) the scattering ability of matter (per one degree per

one steradian); _, R - the distances of an element in space from

the sun and from the earth.

The observed brightness of the zodiacal light will be
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II0 1.0o

• z!

_. \ \I g
/,0 1.0

Figure I

Lines of Equal Cosmic Matter Density, Produced by

Hypothetical Hyperbolic Meteors.

In the ecliptic plane

and therefore

oO

0

= r, r = R sin_____/
sin a

JR= _ I
L_ sinl o

The quantity in the right part of the latter equation is

proportional to the brightness of zodiacal light. We can estimate

this quantity for a = - 0.i, and for a position of the earth on an

orbit corresponding to 0 = 60 ° . For different angular distances

from the sun, we find:

/3O

Western branch of

zodiacal light ......

Eastern branch of

zodiacal light ......

I = 30 ° 1 = 60 ° I = 90 °

8.5

4.4

3.9

i .83

2.7

1.18

It can be seen that the brightness distribution in both

branches is approximately the same, in spite of the fact that the

density structure is completely different in different directions.
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TABLE 2

VALUES OF B (a = - 0.1)

/27

0=-t-2J9 . .

0 = __+15° . .

,_=__+30: . .

=+60 _ . .

0 = + 90° . .

_'= 4- 120° . .

= __.+150° ..

• 0.6 0.8 1.0

Y
Yo
B

Yo
B'

Y
Yo
B

Yo

Y
Yo
B

Yo
B'

Y
Yo
B

Yo
,5'

Y
Yo
B

Yo
B'

Y
Yo
B

Yo
B"

. Y

Yo

0.2 0.4 ]

+0.010 ..+_0.002i

0.205 0.293
2.00 2.00i

0.195 0.272 i
2.00 2.00

052i _+0I07
0.226 i 0.342
1.77] 1.68

O.174 0.233

2.25 2.45

-+0.100 -I-0.200
0.250 0.399
1.60 1.45

0.150 0.199

2.50 2.90

+0.173 ; i0.343
0.280 0.473
1.38 I. 27

0.107 0.127

3.55 4.75

+0.200 +0.400
O.273 O.483
1.26 1.17

0.073 0.083

4.5 " 6.81

+0.173 ___+0.343
0.219 0.394
1.21 1.13

0.016 0.061

5.8 8.9

+O.lO0 +0.200
0.221 --0.345

_.+O.03
0.361
2.00

0.330

2.00 I

+0.155
O.424
1.62

0.272
2.65

.+0.300
0.516
1.40

0.216

3.38

.+0.519
0.657

1.21

O. 137

5.80

.+0.600
0.687
1.12

O.087

8.91

_.+0.519
O.580
1.09

0.052

I1.8

.+O.ZO0
O.470

-I-O.O_,
O.420
2.00

O.380

2.00

±0.207
0.510
1.58

O.305

2.80

-+0.400
0.635
1.37

0.235 I 0.248
I

3.70 ' 4.00

-I-0.692 --I-0.866
0.836 1.014
] .18 1.15

0.144 [ 0.148

.6.85 7.85

-+o.soo _+1.ooo
0.890 1.092
1.10 1.08

0.090 0.90

• 10.9 12.9

_+0.692 -t-0.866
0.748 .0.920
1.07 1.06

0.053 0.054

14.8 17.8

_+0.400

0.590

B

"= 4-177°.1 • y

I

0.512

.+0.010

• 0.012

1.178

0.590"

+0.020

• O.022

l.]Or

0.655

.+0.030

O.032

1.075

O.700

+0.040

0.042

1.058

.+0.05
0.472
2.00

0.422 I
2.00

-+0,259
0.590
1.55

0.332

2.96

.+0.500
0.748
1.35

.+0._00
0.694

0.733

_.+0.050

0.052

1.048
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TABLE 3

VALUES OF D (a = - 0.I)

0.2 I 0.4 0.6 I 0.8 1.0 I._

2.¢9

]5 °
30 _
60°
90 _

]20 _
1,50_
J77 °. 1

I
20.0 14.1
3.991 2.79
2.16[ 1.71
1.351 1.]6
1.161 1.10
1.09[ 1.03
!.131 1.061
1.021 1.00]

I

I
11.5 ]0.0
2.341 2.08
1.44', 1.32
1.09l 1.05
1.04l ].02
1.031 1.02
1.04[ 1.02
l.OOi I.O0

8.94
1.c_O !
1.22
1.04
1.02
1.01
1.02

7.30
1.63

Q
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On the other hand, in terms of absolute brightness both branches

differ to a considerable extent from each other. There is no doubt

that if the meteors have a smaller kinetic energy, this difference

will be even greater. Thus, simultaneous observations on the

brightness of both branches of zodiacal light provide a good means

of determining the content of galactic matter in it.

Such observations can be carried out only in December and in

June, when both branches of the zodiacal light have equally

favorable visibility conditions. In the first case, the ecliptic

is located low over the southern horizon, and both zodiacal

branches - which are located symmetrically with respect to the

meridian and which pass into the weak zodiacal band at the side

opposite the sun - are clearly visible at about midnight at low

latitudes. The western branch is thus superimposed on the Milky

Way, which makes observations much more difficult. Moreover, the

phenomenon is generally very weak.

In June, or at the beginning of July at a latitude of about

45 ° , when the sun is located at a distance of about 21 ° above the

horizon at midnight, and when there is absolutely no twilight, it

is possible to see the so-called Northern Zodiacal Light, which

combines both zodiacal branches toward the sun.

This phenomenon was apparently first observed by Campbell

in the summer of 1907 at the Likskoy Observatory (Ref. 21) in the

form of weak phosphorescence at the northern part of the horizon.

in June, 1908, this phosphorescence was observed up to a distance

of 18° above the horizon. As Fez has noted, the emission line

5577, which is usually observed in the spectrum of the sky, was

not intensified in this phosphorescence. There was absolutely no

twilight, since the sun had sunk below the horizon by approximately

30 ° during these observations.

On the basis of his observations at the Likskoy Observatory
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0_2 °

0=+15 °

0=__+30 °

0 =d:60 °

0=+90 _

:=±177°.1

TABLE 4

VALUES OF B (a = - 1.0)

_0

B

Yo
B

)+'o

Bt

Yo
B

v3
B° I

Yo
B

Y;

b'

Yo
B

Yo

B'

yo
B

Yo
B

3' o
b°

Yo
B

O.637

! .99

O. 654

1.91

0.60

2.08

O. 663

1.85

0.56

2.20

0.64

1.74

0.47

2.39

O. 558

1.64

0.36

3.67

0.415

1.58

0.221
1.55

o.121
4.48

O.02005

1.42

0.4

0.935

1.98

0.94

1.88

0.84

2.10

O.969

1.79

0.77

2.28

0,967

] .64

0.62

2.59

0.863

1.58

0.45

4.60

0.653

1.47

O. 352

1.44

O. 152

5.80

O. 0325

1.33

0.6

1.111

1.97

! .17

1.86

1.01

2.13

1.22

1.75

0.92

2.33

1.24

1.59

0.72

2.72

i.J31
1.46

0.53

5.39

O. 867

1.39

0.471

1.36

0.171

7.23

O. 0439

1.27

0.8

1.285

1.97

1.36

1.84

1.16

2.16

1.44

1.71

1.04

2.39

1.50

1.54

o..80
2.85

1.38

] .41

0.5g

6.13

1.067

1.35

O. 583

1.34

0.183

8.52

0.0549

1.23

i .0

1.439

1.97

1.54

1.82

1.28

2.17

1.69

1.69

1.14

2.44

1.73

1.50

0.87

3.08

1.62

1.38

0.62

6.85

1.26

1.32

0.693
1.29

O. 193

!.5

1.77

1.97

1.92

1.69

1.54

2.23

2.08

1.65

1.34

2.56

2.28

1.44

0.93

3.35

2.19

1.31

0.69

8.'54

1.73

1.25

0.966

1.21

0.216

9.74 12.07

0.0556 0.0919

1.21 1.16
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on the northern zodiacal light, Fez attempted to determine the

visible isophots by visual means, extrapolating them up to the

intersection with the ecliptic. He discovered a lenticular form

for the phenomenon which was rather symmetrical with respect to

the sun, extending along the ecliptic at both of its sides by

approximately 70 ° , and by 46 ° to the north of it. These observa-

tions did not carry very great weight, since they were not performed

photometrically. Nevertheless, there is no doubt that zodiacal

light is represented by approximately identical isophotes at both
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TABLE 5
t

VALUES OF D (a = - 1.0)

0,2 0.4 06
O,

_.02. °9

15°
30 °
60 °
90°

120_
150 °
l? 0°

63.4
12.22
6.09
3.26
2.19
1.92
1.70
1.41

4,5.4
8.6]
4.40
2.39
!.66
1.48
1.35
1.21

37.2'
7.]5
3.63
2.01
].45
! .33
1.23

1 ,]4

32.4
6.14
3.18
1.83
|.34
1.23
1.14
1.11

i.0 !.5

23.8
5.55 4.71
2.87 2.38
1.6,5 1.44
1.26 1.17
! .17 1.11
1.11 1.08
1.08 1.05

/3O

sides of the sun. This excludes the idea regarding its connection

with individual meteoric streams or with comets, as Elvey assumed

(Ref. 22).

Similar observations on the northern zodiacal light were

carried out for several years by Barnard, S. Newcomb, and other

American astronomers (Ref. 23, 24, 25). In particular, this

phenomenon was observed in a systematic way by Newcomb in the

mountainous regions of the United States and by Shveytsarya at

an altitute of 7700 feet. He came to the conclusion that the

zodiacal light was quite sharply restricted to the north of the

ecliptic at a distance of 35 ° from the sun, much more sharply than

the zodiacal cones or branches along the ecllptlcal plane.

"The limit of 35, which I have set nevertheless seems to me

much more precise than any limit that has been, or can be , set

in the plane of the ecliptic".

This 'statement by Newcomb is of great importance.

I personally carried out photometric observations on the

northern zodiacal light in the vicinity of Talgar, 40 km east of

Alma-Ata, at the beginning of July, 1946. The Lapot' mesa, on

which the observatory was located, stands alone among the surroun-

ding plain, rising 1400 m above sea level. The observations were

performed with a radioactive photometer, and the brightness was

expressed in absolute units by making a comparison with the extra-

focal stellar images. It was quite difficult to reduce the

observations, since as a rule they referred to large zenith dis-

tances, and required an exact knowl_dge of the atmospheric trans-

mission index.

The photometric data which I obtained did not enable me to
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draw a conclusion as to the existence of asymmetry in the form of

zodiacal light around both sides of the sun.

As was indicated above, generally speaking, both branches of the

zodiacal light cannot be observed simultaneously. Moreover, photo-

metric observations on this phenomenon are extremely scarce, and have

not been conducted systematically. Therefore, one should not disre-

gard the evidence of observers who have noted the extension of the

zodiacal branches for several years under different conditions.

There have been several such observations: Schmidt (1843 - 1855),

Deshevrens (1875 - 1879), Geys, Weber (1849 - 1883), Jones (1854),

Serpierl, and others. The summary presented by Schermann (Ref. 26)

can be used to compare the extension along the ecliptic of both zodia-

cal branches on the basis of such observations. We should note, how-

ever, that the observations of Jones are not uniform, since he made

them from the deck of a ship at different locations on the earth.

The other observations can be compared with each other, if they were

made by one and the same person with the same inclination of the

ecliptic toward the horizon. On the average, it can be assumed that

the difference in atmospheric conditions is excluded.

For purposes of illustrating the dependence of the degree of

zodiacal light visibility on the inclination of the ecliptic, I con-

structed two graphs on the basis of observations by Honnorat (Ref. 27).

For a period of several months, he observed the quality of atmospheric

conditions, the brightness of the zodiacal light, and also its exten-

sion along the ecliptic in a certain arbitrary scale. Following is

the graph which I constructed for December - when the ecliptic is

slightly inclined toward the horizon - and February-March, when the

observational conditions are much better and when the zodiacal light /34

can be traced much closer to the sun (i designates the best atmos-

pheric conditions and the greatest brightness) (Figure 2). As can

be seen, in December zodiacal light is extremely weak for each atmos-

pheric condition, but in February-March there is a definite correla-

tion between the atmospheric transmission and brightness: a great

amount of brightness, which generally reaches significant intensity,

also corresponds to the best atmospheric conditions - i.e., to great

atmospheric transmission. The zodiacal light, as well as its dimen-

sions, significantly increases on high mountains, as was repeatedly

observed by A. Humboldt (Ref. 28, 29). However, he assumed that

the zodiacal light did not change in actuality, and that it depended

entirely on atmospheric conditions. It is interesting to note that

there is no such relationship for the total brightness of the night

sky. On the contrary, there are indications that the brightness

of the sky around the celestial pole increases with a decrease in

the index of atmospheric transmission (Ref. 30).
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Figure 2

Brightness of the Zodiacal Light as a Function of Atmos-

pheric Conditions.

The observed extension of a branch of the zodiacal light

along the ecliptic can serve as a certain index of its absolute

brightness. Comparing this extension for the morning branch in

October and the evening branch in March, when visibility con-

ditions are the same, on the average, for several years, we

obtained the following results:

/35

Observer

Deshevrens ..................

Geys, Weber (1849-1860) .....

" " (1861-1871) .....

" " (1872-1883) .....

Evening
Branch

(March)
65 °

65 °

77 °

90 °

Morning

Branch

(October)
65 °

70 °

75 °

104 °

We should point out that at a distance from the sun of 90 ° ,

the visible brightness of the zodiacal light increases no more
than 10-15% for an extension of I0 °. Thus, it can be stated that

the experimental observer with several years practice sees the

evening and morning zodiacal light of the same extension and

brightness.

Maunder also pointed out the equal brightness of both branches

of zodiacal light; he observed this phenomenon in the tropics during

his travels in India (Ref. 31).

This receives additional confirmation from the photometric
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observations of Sandig, which he carried out in Equatorial Africa

(Ref. 32) at the Vinduk Observatory (4 = - 22°.5).

Thus, for example, for different isophotes, we have the

morning and evening branches determined by Sandig on the average

for June 29/30, and July 2/3 and 7/8, 1935:

llsophote veningorningli35 ° 33 ° 2 51 °

44 46 3 77

Isophote Evening Morning

56 °

82

The small difference does not exceed the deviations between

individual days.

It should be noted that these observations were carried out

photographically, using a Leiea with a lens aperture of 2.5 and

exposures of 15 TM - 30 TM. The original negatives were so weak that

it was necessary to make several reprints in order to intensify the

contrast.

It is understood that the measurement accuracy cannot be great

under these conditions.

Thus, it can be concluded that all of the data point to the

absence of any influence from individual meteoric streams, in par-

ticular, hyperbolic streams, on the zodiacal light.

Streams of hyperbolic meteors, arriving from interstellar space,

cannot be uniformly oriented in all directions in the ecliptic plane.

One or two such streams can occur only by chance, which are captured

in the solar system. The observed nature of zodiacal light contra-

dicts such an assumption. The role of hyperbolic meteors must be

insignificant.
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CHAPTER 3

Integral Effect of the Decay of Periodic

Comets

Let us examine the problem of the origin of meteoric matter in

the solar system.

/37

Let us postulate the following mechanism for its gradual accumu-

lation. We shall assume that comets having a parabolic velocity fall

within the sphere of influence of the sun. A certain percent of the

total volume of such comets will be captured by large planets, pri-

marily Jupiter, and will remain within the planetary system. Gradually,

under the dissolving influence of the sun, their mass separates into

meteors and is distributed along the entire orbit in the form of a
continuous circle.

The totality of meteoric streams, building up for several million

years, comprises the general complex of cosmic matter, and the density

distribution within it must be studied.

We have absolutely no information on the properties of individual

orbits of meteoric streams. It is only possible to discuss the prob-

lem, because we assume that there is a very large number of several

kinds of orbits. If this amount is so great that the law of large

numbers can be applied, then we have a right to speak about the actual

density distribution in the meteoric complex.

In the opposite case, we can only speak about the probable density
distribution.

It must be noted that the following assumptions must be employed /38

in order to solve this problem:

i. The velocity of a parabolic comet outside the sphere of in-

fluence of the sun can be oriented in a completely arbitrary way.

This is the only assumption which has a hypothetical character. I

introduce it as the simplest assumption. However, nothing is changed

or is rendered more complex if we assume any law for the orientation

of comet velocities with respect to the solar system.

2. The orbit elements of a periodic comet do not depend on its
mass.

3. The aggregate of cosmic dust does not have periodic density
fluctuations.
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The second assumption stands to reason; we must accept the

third assumption, although it is not readily apparent. If periodic

density changes occurred, then we could study only the mean density

at a given point of space. Consequently, we must assume that in

each volume of space, the amount of matter entering it equals the

amount leaving it - i.e., that our complex of cosmic dust is every-

where in dynamic equilibrium.

Generally speaking, the elliptic orbit is characterized by

five elements: i, _, _, a and e. In the given case, we have all

possible values for _ and _ which can occur with equal probability,

since the entire aggregate of matter has a circular symmetry.

In addition, we shall confine ourselves to investigating the

density in the plane of symmetry, and therefore we shall assume

i = 0 °. Consequently, we must study the total group of orbits

with all possible a and e, which are located in one plane.

For purposes of simplicity, it is assumed that the planet

Jupiter, which rotates around the sun in a circle with uniform

velocity, is the only one to capture the comets. We shall try

to determine the density distribution in the orbit plane of

Jupiter.

Let us first examine the total group of elliptical orbits with

the same a and e, which are located uniformly around the sun in the

given plane. Let us introduce two ellipses, whose axis forms the

angle 8. Let us turn one of the ellipses at the angle dS. Then

its intersection with the other ellipse is shifted by the distance

dZ, with respect to this ellipse. Using r to designate the radius

vector of the point of intersection and _ to designate the angle

between r and the tangent at this point, we shall have the obvious

relationship

r d_ = sin _dl.
2

Consequently, the quantity dl, which characterizes the frequency
with which such orbits are intersected, is proportional to r, and

inversely proportional to sin _. At the point of intersection,

the angle between the orbits is apparently 2_. The shortest distance

between contiguous orbits is proportional to

r sin2_.
sin

Therefore, for a uniform distribution of matter along the elliptical

orbits, the surface density is proportional to

Sin a

r_n26"
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However, in stating that we are determining the density distri-

bution in the orbit plane of Jupiter, we do not wish to say that it

is necessary to determine the surface density. The density in space

is determined from three measurements. Consequently, it is necessary

to take the total group of planes located around the orbit plane of

Jupiter, which correspond to such small values of i that it is

possible to assume an equal distribution of surface density for all

planes. All of these planes radiate out from the general point S.

Due to this, in a certain volume which is located in the orbit of

Jupiter, the density of ceteris paribus must be inversely propor-

tional to its distance from the sun. Finally, we should note that

the density cannot be the same in different parts of the elliptical

orbit. In actuality, in order that our dust complex does not have

periodic density fluctuations - as is assumed - it is necessary that

the amount of matter be the same on each element of the ellipse

which is penetrated by moving particles in a definite period of time.

But, on the basis of the law of areas, we have

2

where p = a(l - e2) and k represent the gravitation constants.

Since d_B -- 2dlsin
F

it then follows

r sin= dl=l_]/pdt.
1

Since the density along the same orbit changes as _ _-_ we

consequently obtain a new factor of proportionality, namely:

r sin =

If we combine all of this together, we can see that in the

total group of such orbits (with the same a and e) the density of

cosmic matter changes proportionally to

sin = I r sin = .
#

r sin 2_ r V_

i.e._

D=C _g_

rFT"
where C is the proportional factor.

Let us now determine C in such a way that the total amount of

matter distributed along the ellipse equals M - the mass of the

decomposed comet, which is independent of the orbit elements.
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The amountof matter per unit orbit length is
Crsin =

Throughout the entire orbit, the total mass is, consequently,

c_ frs n=arM,

or

and CT = M, if T is the rotation time along the given orbit.

Disregarding the factors which are constant for all the orbits,

we can assume the following on the basis of the third law of Kepler:

M
C_ .

aall

Thus, the density in the total group of similar orbits, located

in close planes, is as follows,up to the coefficient of proportionality:

D= lg_

. #a_li i/'_"

The angle a can be readily expressed by a, p and r. Investigating the

triangle between a given point on the orbit on both focal points, we

obtain

4a_e _= r = -[- (2a -- ri_Jr2r (2a - r) cos 2=,

from which it follows

I/ i/ °"sin _:-- ap a tg = ---=-
2ar " rz 2at -- r' -- ap

In order to determine the density in the entire collection of ellip- /42

tical orbits which are characterized by all possible values of a and

e, it is necessary to take the double integral D with respect to the

variables a and e, attributing to each D the corresponding degree of

probability. Consequently, we must first of all analyze the proba-

bility of encountering in the total ensemble the orbital elements a

and e or a and p, which have a certain definite value. A simple

solution of this problem is very difficult. I shall overcome this

difficulty in the following way.

Tisserand's criterion provides the dependence between comet

elements before and after large perturbations.

We have

la --_2V. a (1 ,e _) cos i_- 1-_2 ]L.ax..(1 -- e_) cos i,.

In our case, periodic comets are obtained from non-periodic comets

by Jupiter capturing the latter ones. Therefore, assuming
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aa=oo; a,(1--e_J-=2q; a(1--e2)=p,

and also i = i I -- 0, we obtain

a

We shall use _ to designate the angle which the tangent to the

parabolic orbit of the comet makes with the orbit of Jupiter at

the point where both orbits intercept. The tangents are drawn

in the direction of orbital motion. Due to the properties of a

parabola, it can be readily seen that q -- R cos2_, if R is the

orbital radius of Jupiter. From this point on, we shall set R = I.

The preceding formula yields:
I

cos
In addition, Professor Newton (Ref. 33) derived the following

relationship: ps

a---_4mcos_sinT'
v0

where s - _ is the ratio of the comet's velocities around the sun

and Jupiter along its orbit, 2y - the angle between the asymptotes

of the comet's hyperbolic orbit with respect to Jupiter, _ - the

angle between the perijovian of the relative orbit of the comet and

the direction of motion of Jupiter, and m - the mass of Jupiter in

units of solar mass. The sign of _ determines the type of trans-
formed orbit.

Expressing p, s, _ and y by _, d (the smallest distance

between the orbits of Jupiter and the comet) and h (the distance

at which Jupiter is located from the point of largest orbital

encounter, when the comet is located at the corresponding point),

Newton obtained the following relationship for the perturbed semi-

maj or axis :

s AS--l-a_-I:h' sin' 0
a_---- -

4m A cos O.-t- h sin s 1_ '

where

A=m--eR _R=I), cos0 i--¢
s,' =--_- ; s'=3- 2V_cos_

In this ease, d = 0, since the comet intersects the orbit of

Jupiter. After several transformations, we obtain:

4a =

Thus, the variables a and p can be expressed by _ and h or

q and h - quantities pertaining to the initial orbit. The problem

regarding the probability of elements a and p is then replaced by
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the similar problem with respect to h and q. What is the probability
ofh ?

Since Jupiter rotates along a circular orbit with a uniform

velocity, for each moment of time - taken arbitrarily - the proba-

bility that it will be located at a definite point on the orbit does

not depend on the position of this point. If select the time at

which the comet intersects the orbit of Jupiter as this moment in

time, we can state that the probability of the distance of Jupiter

from the comet - i.e., h - does" not depend on the magnitude of h.

Only small values of h are of practical interest to us.

The problem of the probability of q is somewhat more complex.

It would appear that the simplest method is to solve the problem

on the basis of direct observations, comparing the statistics for

the magnitudes of q for all known periodic comets. A curve is also

obtained which has minimum values of the ordinates close to the

sun, reaching a maximum at a distance of the radius of the earth's

orbit and then rapidly decreasing to zero. There is no doubt that

it depends to a high degree on the visibility conditions of the

comets at the moment of discovery, and this cannot be taken into

account by a quantitative method. Therefore, by virtue of neces-

sity we must resort to hypotheses and determine the probability of

q on the basis of our assumptions (I).

Let us assume that at the initial moment on the boundary of the

solar sphere of influence the comet coordinates will be:

xo=ro; yo=O; zo=O_

and the velocity components v0, which form the angle 6 with the

radius vector r0, will be:

e katie . \dt/e

On the basis of the area integral we thus have:

roy o sin _=_ ]/_,

and since V 2 2k2= _ , we have
r0

q = ro sin 2 _.

Assuming that the comet is located in the plane of Jupiter's orbit,

we have the following for the probability that the velocity vector
will be included between _ and _ + d_:

2d_

7g

But the probability for q to be located between q and q + dq

is P6' if only dq is determined from the relationship

dq = 2r o sin _ co.s 8d8,

since all comets which fall in the interval _ and _ + d6 must fall

/4__i_4
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in the interval q and q + dq. It thus follows that the probability

of pq is:
dq

The vector r 0 is a quantity which is immeasurably large as compared

with q (perihelion distance of comets which can be captured by Jupiter).

We can therefore assume that the desired probability of q is simply

proportional to I .

/¢q

We shall now regard our partial density D as a function of two

variables q and h, whose probability has been found. Consequently,

the total density at a given distance from the sun is

• vfF
Let us assemble our formulas for determining the density of cosmic

dust in the orbital plane of Jupiter:

s_=3 -- 2 V2cos _;

sin == (_f,cos o>_ 2_) _ a• (2a -- r) r ;

(?-1 -at- ). 2s' sin: w
4a =

1/_cos _ -- J + _ 2s sin' -
/n

lg =o= ;  =SS oaha os, .v-i,..i.l"

The double integral can be successfully calculated by mechanical

quadrature, because a - which changes from 90 ° (perihelion) to a

certain minimum, depending on e, and then again reaches 90 °

(aphelion) - exceeds by a factor of two the integrand at _. This

difficulty disappears if one accurate quadrature is used. This

can be done simply with respect to h. If we assume

4a =1 + rex'
b-]v nx

and if we express all other _uantities as a function of x using this

relationship - i.e., tg _, /p and a3{2 - , then we obtain the radical

from the polynomial of the seventh power in the denominator. It is

impossible to accurately calculate such an integral.

/46

In essence, this difficulty with the quadrature lies in the

very nature of the problem, and cannot be eliminated by changing the

variables in any way, if the preliminary density determination in

the ensemble of elliptical orbits with identical a and e is retained.
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There is one possible approach under these conditions: to

calculate the density, not at a given point, but the mean density

in a volume of finite magnitude.

For given a and p, the density is simply proportional to t_a.
r

Let us determine the mean value for a circular surface 2_r0Ar.
This will be:

!

2_roAr 5 tg=r rdrdO =r_rI"-L-J[ tg _ dr.

But

r -- a = q- V'a= sin' =-- ap
sin a

from which it follows that

dr = ap C__Os_a_d_

sin'a l,/ a'sin _ a -- ap

Now assuming that x = Cos _, for the integral we obtain the

following relationship :

p _ d_ro-Ar (1 -- x_)l/ e _- x' '

where e is the eccentricity.

In addition, if we assume

-------sin _,

we can transform the integral to a new form

-- P---_-I d_ =-- P--I d? r_rl d? .roar "I-- e_ sin-' ? 2troAr I q- e sin ? 2 I -- e sin

Finally, introducing the new variable

_l--z
tg 2 -- ,

we obtain a polynomial of the second power in the denominator of

the integrand.

The first integral yields

the second

"P r d8 p

-r'_r J 1 -]-2ez -F ="-= roSr

,+e
arc tg --

V1 -- e s

_/47

PS d,r-_r l -- 2ez-I- _ =

and on the whole we have:

Z--£

arc tg ,.
P VI -- e'

ro _ V 1 -- e"
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!

,.+-f_,

! ( tg a_ rdrd8 = --
2r,ro6r J r

!
r,--_ &r

r,Ar 1/? -- e'
arc tg.

| -

,o+ _- _ •
2z

Z T _ e2

l -- e'
I

r,-- -_- ,xr

where

2z£
COS_

lq-z' ;

We should note that

dr ap cos m

d_ (r--a) siu s _"

dr
If s = 90 °, then _a = 0. Due to this, it is possible to

represent the density at a very critical point in the form of a

series consisting of powers of As. Our mean density is:

r.+ -21-Ar

(D)-- f arc tg _= I/Y-_-_ ] "
ara_r 1 -- z s •I

I
r,--- 2- Ar

For any r0, we can calculate a, and then 9 and z. In addition,

for a given increment Ar, we can calculate Az, according to the

formula

'Az= sin_ = (r° -- a) Ar.

2e cos I -? cos ? cos _.ap
2

For s _ 90 ° , the change in r is of one order of magnitude with

s, and also z. Therefore, for a sufficiently small Ar, the integral

/48

! I Ar
r.-_- -2- Ar r.+ 2

roa---; tg _ dr = ro_rtg=m dr
1• I

r.-- _- A¢ r,--- 2- ar

differs slightly from tg s0. Consequently, generally speaking,

there is no necessity of employing the preceding expression with

the exception of only critical points. For the latter, this

inconvenient formula can be expanded in series.

We have:
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arc tg 2z If i -- e\ : 2z I/i-- e_ -- 2 V 1. e" (1 - 4eD zSq -
I -- z_ 3 ....

But

Consequently,

and therefore

arc tg 2_ 1/1 -- e_
1 _z s.

2g cos ot

1-l-z: e

z-_°_ _ + co_,,...+
2e 8e' " " " '

But, by assumption, a differs very slightly from 90 ° .

,,=90 °- if,

we obtain
I

_)=V,--e'( ,-,'..-- )I_._----_ !+_+'_-.._, , ,
I

r,--- 2- _r

At the critical point

Introducing

r--a(1 -t- e) and r-----a (1 --e).

In the first case

(t_)=¢ r-_-_ _+ " _+
roArae (1 4- _ Ate'Jr-...).

From the formula, we have

sin _t-=¢ ap(2a --r) r

and, if r differs slightly from a(l + e), we have:

Consequently:

'+'=_-:_'--¢a_+_)_"+,. ....

\p /

I

2 e[,--(_+_),r+...].
The mean density is

I

T

(19)-- ;/1 - e: " (1;:_ro_l__') +-
or,for sufficiently small _r,

1+a.6, -2Arq-p"")
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V1 -- e" .= V'2
(D) =

roaV Ar _/ ae ar ° I/'-A-_ _/-a(a --p)

For r = a(1 - e), we have the same formula.

It now remains to determine the maximum Ar, at which it is

possible to remain at a sufficient distance from the critical

points without changing the densities, calculated according to

the simple formula ___tg __ .

ra3/2 _-p

This problem is somewhat arbitrary, because the greater is Ar,

the greater the distance from the critical points at which one must

stop. Nevertheless, the mean density is obtained at those points

which are most convenient for mechanical quadrature.

Let us represent the "instantaneous" density D in the form:

1 !
D=

ar ]/2at-- r" -- ap'

and we shall try to determine its mean value

!
,.+_ A,

(D) =--k-I I dr =
ro_ra V'2ar -- r t- ap

I
,o---f A,

a( ')I Ar a--ro-l-_Ar
a--r o -- --

--- arc COS -- arc cos
ae ae

Expanding in series in powers of Ar, we obtain:

Since

we then have

(o--roVae
--roAra 1-- k ae /

l + 2 (a--roX) '
k ae /,

(, /,_:a--,.;,
ae / _/ \ ae /

+

I I I
DO r_--'" ° --9

J/ \ ae ,/

(D)----Dc

a -- ro_2
I+2\ ae 7

[, _ (a-r°']' l '
\ ae /.u

/5O

/5__!_1
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These series in powers of Ar are not suitable for determining the

mean density at the critical points, but for all other cases they

make it possible to determine the maximum Ar, at which (D) differs

little from D O .

We should note that for r = a (I ± e), it would be possible

to use the accurate formula

where

(D)= l__.!__arc cos (1 l_r)aro_W . 2 _e '

ae=-_ 1/'(2a)'-- 4ap ,

but the expression which we derived previously is more suitable for

the calculations.

We should note that the result of integration has slight

indeterminancy. Due to this fact, the calculated values of rD are

insufficient for tracing the course of the integral curves close

to the critical points In particular, this is the case for the

calculation of the first integral for h = I and r = i, since we

have here three critical points. The m third is obtained for

cos _ = 0.7072, as can be readily ascertained, if the expression

2a - I - ap is formulated on the basis of our formulas and if the

following is substituted:
!

CO8 CO_--.

Assigning_different values to h and cos _, we can calculate the

corresponding actual magnitudes of mrD.

Determining individual values of rD for different h and cos _,

we can calculate the critical points - determining themmfrom the

condition tg _ = _ or 2a - r2 - ap = 0.

I employed graphic interpolation for a definitive determination

of the critical points. In addition, the first integrals were

calculated in terms of the variable cos _, and finally the second

integrals were calculated in terms of the ensemble of first integrals.

The results derived from the calculations are set forth above (see

Table 6). The first integrals corresponding to _, which do not

appear in the preceding Table, were determined by graphic inter-

polation.

Having a second integral for each r, we can obtain the desired

A, dividing the magnitude of the integral by r. Assuming that the

density of cosmic dust at the distance from the earth to the sun

equals unity, we obtain the following Table 7.
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Close to the sun, the cosmic dust intensity decreases inversely

proportional to the distance. At a distance of 3.90 astronomical

units, there is a certain retardation, which is changed into a

slight maximum around the orbit of Jupiter. In addition, the

TABLE 7

/58

,r in radii

of Jupiter's

orbit

0.05

0. i0

0.15

0.25

0.35

0.50

0.75

1.00

1.25

i .50

2.00

r in radii

of earth's

orbit

0.26

0.52

0.78

1.30

i. 82

2.60

3.90

5.20

6.50

7.80

10.40

Second

Integrals

I0.84

11.41

i0.74

11.40

11.12

i0.88

12.01

16.66

7.83

6.19

5.16

Density

A

3.75

i .974

1.229

0.789

0. 550

0.376

0.277

0.288

0.108

0.071

0.045

density rapidly decreases, and asymptotically approaches zero

(Figure 3)

There is no doubt that in such a complex of cosmic dust the

observed brightness will rapidly increase as the sun is approached,

just as occurs for zodiacal light. However, it is quite doubtful

whether such a mechanism for the capture of matter can provide

sufficient density of it in space, since the probability for larg 9

perturbations is, generally speaking, very small. In addition,

the elliptical orbits which are produced exist for only a limited

period of time. The density of the dust-like matter, obtained in

the prescribed way, must rapidly decrease along bothsides of the

orbital plane of Jupiter, which is not the case in actuality. In

order to clarify this problem, it is necessary to study the

manner in which the probability for comet capture is related to

the inclination of their orbits to the orbital plane of Jupiter.

If it is found that this probability decreases very rapidly with

inclination, then a search must be made for other possible methods

by which the planetary system can be enriched with cosmic matter.

In any case, the transformation of non-periodic comets into

periodic comets, and the decomposition of the latter into meteoric

streams, represent an indisputable fact which has been repeatedly
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Figure 3

Density of Cosmic Dust in a Complex of Comets Captured

by Jupiter.

observed in actuality.



CHAPTER 4

The Probability for the Capture of Comets
as a Function of Their Orbital Inclination

In order to solve the formulated problem, let us examine the /60

following model. Let a disturbed planet - Jupiter - describe a

circular orbit around the sun, which is located at the origin. Let

p be the radius for the sphere of action of Jupiter. If a parabolic

comet passes through the sphere of action of Jupiter, it undergoes

large perturbations and can be captured. The sphere of action

describes a certain torus during the motion of Jupiter. Jupiter

can be located at any point on its orbit with equal probability.

It thus follows that the probability for large perturbations must

be proportional to the time during which the comet is located

within the torus or -which is the same thing - the section of its

orbit included within the torus. Thus, in order to solve the

formulated problem it is necessary to determine the mean magnitude

of this section for all possible orientations of the comet's

orbit in its plane, and all of its possible perihelion distances.

If the orbit of Jupiter, having radius a, is located in the

plane xy then the torus equation will be

(r -- a) _ J-j z _-: p"; r _ --= x 2 +y'.

The equation of the parabola will be

x" sin" co --y co_s__cosi ' = 4q q--xcos_--yc--g_s i ,

where i is the orbit inclination, q and m - the periheli9n distance /6].

and angle between the line of apsides and the x-axis. Finally, the

equation for the orbital plane of the comet is z -- ytgi.

When solved together these three equations give the coordinates

Xl, Yl, Zl; x2, Y2, z2 for the point at which the torus intersects
the parabola.

A rigorous solution is very complex. In order to simplify the

problem, we shall assume that - due to the smallness of 0 as compared

with a - the section of the parabola within the torus differs insig-

nificantly from a straight llne.

In addition, it can be assumed that the curves of intersection

of the torus with the orbital plane are ellipses if the angle of the
orbital inclination is not too small.
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The equation of this ellipse in the orbital plane of the comet,

which is assumed to be the xy plane, is

or, assuming
(x -- a) _ --I- / sin 2 i = p_

x=- a-[c _; Y= %

_' -[- p_/sin' l 1.

(8)

Let us set a = i.

The equation for the parabola can be written in the form

(x sin _ --y cos _)_ = 4 q(q -- x cos _ --_ sin o).

Disregarding terms of a higher order with respect to _ and n,

we find the following equation for a straight line which represents

the section of the parabola within the torus:

where

A _ -{- B _ -+-_c -_ O, (9)

A : 2 sin °"to -{- 4 q cos o_; B -_ -- 2 sin _ cos co -t- 4 q sin co;

C = sin2 to -_- 4q coso -- 4q*.

Solving equations (8) and (9) with respect to _ and n, we can deter-

mine the points at which the parabola intersects the ellipse, and

we can then find the length of the corresponding section d:

[(2q sin to --sin (o cos m)°'-]- (sin_ o_-{-2q cos to) 2 sin2i] 2 =
4

=(4q 2 -t- sin _-o))(2q sin o_ -- sin to cos,o)zt_ 2 -at-

_}-(sin 2o_ .-}- 2q cos o) 2 ?2 sift 2i __(sin z to -- 4q _ -_- 4q cos to) z slnZi.
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The magnitude of d, determined from this expression, represents the

function f(i, _, q). In order to determine the corresponding

probability of Pi, which is dependent only upon i, it is necessary

to integrate f(i, _, q) with respect to all possible values of q

and _. The probability of q is proportional to q-½. The proba-

bility of _ does not depend on its magnitude. Consequently, we

have

p, .-.. f f/(i, o_,q) a.o,aq

It is necessary to find the integration limits for q and _. We

can first write

d °- -_ 4 P' (! -- m cos' i) -- Nsin t l
(1 -- M cos' i)"

where
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/_ _ (sin-"o, -{- 2 q cos _o)' (sin' o_--4 q' + 4 q cosec)'
4 q'+sin'= ; /V_ 4 q'-I- sin' _°

We must now find the total group of values of q and _, for which

d2 > 0. These quantities can be regarded as coordinates in the

orbital plane of the comet, which define a certain area. Conse-

quently, it can be stated that the condition d2 >i 0 is satisfied

each time that the perihelion of the comet orbit falls within

the limits of the corresponding area. It can be readily seen that

the relationship holds

sin_o--4qZ-_4qcosm=O or cose=2q--I

if the comet trajectory passes through the point with the coordinates

x = i, y = 0. The equation for the same curve passing through the

point i + _ is

cos_-_ _sino---=2q--2q_--1,

where higher order terms are discarded. This is an equation with

two parameters _, n, which are related to each other by the

relationship

_2 + _ sin _ i = p'.

By varying the variables _ and q, we can determine the series

of curves, the enveloping of which determines the region of actual

values of & Excluding n between these two equations, we find

[(q,o,_)=cosm--2q-_l+sinofP-5' k2q_=O.
sinl

Finally, excluding E between f(q, _, _) and

O_ff= 0 = sin = _ 2 q,
O_ sin i Frp* __ _,

we find the desired equation for the enveloping regions of actual

values of q, _ - namely:

P (_, q) = cos _ -- 2 q + 1 + P ,r,__.,,= + 4 q, _i_, i _-- O.
sin l

On the basis of this equation, after certain transformations we

can determine the following approximate expression:

/ _i,,____+ (1 + cos =)8+...2 q = 1 -_- cos o ____p si_' '

Assigning fixed values of i and substituting different values of q,

we can find _, which represent the desired integration limits. The

integral itself must be calculated by mechanical quadratures.

According to Tisserand (Ref. 34), for the radius of Jupiter's sphere

of action we can assume p = 0.062, and we can calculate the values

/63

47



of the integrand for q as 0.0, 0.25, 0.50, 0.75, 1.00, and for _ 00,

15 °, 30 °, 45 ° , 60 ° , 90 ° . However, this r_ethod cannot be applied

for i = 0. In this case, the intersect_: _n of the torus with the

plane of the comet orbit represents the combination of two concentric

circles with the radii i + p and I - p. Due to the smallness of p,

the section of the parabola within the torus can be regarded in

this case as the segment of a straight line, since the smallest

radius of curvature for the parabola - close to its perihelion -

is approximately ten times greater than the orbital radius of

Jupiter. If q differs significantly from a = i - namely, if q _< 0.8 -

we can find the following expression for the length of the parabola

segment within an accuracy of small quantities of the fifth order:
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,_= 2p 1 + s (_-q),

If, on the other hand, q ffii, we then have the exact expression

d= V p:+ 40

The method given here is only approximate. However, it can be shown

that its accuracy is not less than several percents for the assumed

value for the radius of the sphere of action.

If we designate the probability for a comet being captured by

Jupiter by P0 for a normal angle of inclination, we obtain the

following Table which represents the final computational results :

Angle of

inclina-

tion i

90 °

60

45

30

15

0

Probability

of capture

P0

1.00

1.20

1.45

2.02

3.98

62.7

It can be seen that an overwhelming amount of matter which is pro-

duced by thedlsintegratlon of comets captured by Jupiter must he

located close to the plane of its orbit. A complex of cosmic dust

which is produced by the same mechanism in the solar system cannot

have anything in common with the observed form of zodiacal light - which,

as is known, is significantly extended on both sides of the ecliptic

plane. Therefore, it is necessary to investigate another possible /6____5

mechanism by which cosmic dust occupies the solar system. In this

respect, the ring of asteroids is of particular interest.
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These bodies - which frequently exhibit comet-like orbits -

have arbitrariliy small dimensions. Due to the negligible force

of gravity, all disintegration processes - for example, asteroids

colliding with each other and with meteors - produce cosmic dust

which enters interplanetary space. Due to this, the problem of

the total number and over-all surface of asteroids must be investi-

gated in greater detail.
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CHAPTER 5

Possible Number and Total Surface

of Asteroids

Generally speaking, observations have shown that the number

of asteroids increases with a decrease in their brightness. The

lower limit of brightness for asteroids which have been discovered

is determined by the optical power of the astrographs employed.

Asteroids which are brighter than 12.5 mg are apparently becoming

increasingly exhausted, and are discovered only very rarely. There

is far from adequate information about weaker bodies, and the

smaller the number, the weaker they are - as can be seen from the

following Table.

NUMBER OF SMALL PLANETS WITH KNOWN ORBITS

AS A FUNCTION OF BRIGHTNESS
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mg
No.

%

mg
No.

%

8.5 8.5-9.5

5 13

0.4 0.9

12.5-13.5

457

32.6

9.5-10.5

53

3.8

13.5-14.5

357

25.5

10.5-11.5

154

Ii .0

14.5-15.5

119

8.5

11.5-12.5

219

15.6

> 15.5

23

1.6

There is no doubt that the decrease in the number of weak

planets is due to the difficulty entailed in locating them and in

performing repeated observations to determine the orbits. 1513

asteroids were known on January i, 1941, whose orbits were deter-

mined. On January i, 1943, 1546 asteroids were known (Ref. 35).

The orbits have been determined for only 10-15% of the planets

which have been discovered; the remaining planets have been lost.

This occurrence is clearly indicated by the photographs of small

planets which were made by Hubble and Baade with a i00" reflector

at the Mount Wilson Observatory. Baade found traces of 37 asteroids

with a i00" reflector on 21 films - i.e., 4.4 asteroids, on the

average, per square degree. Consequently, in the +--5° zone the total

number of asteroids which can be detected by the i00" reflector -

i.e., up to approximately the 19th magnitude - must be 44,000.

According to Hubble, on the basis of his photographs of the sky

using the i00" reflector, it can be concluded that the total number

of asteroids up to 19 mg amounts to 30,000 throughout the entire

sky (Ref. 36).

Let N m designate the total number of asteroids up to m

apparent magnitude in the mean opposition. Plotting igNm as a
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function of m on a graph, we can see that the resulting curve passes

considerably lower than the number given by Hubble and Baade. This

enables us to correct the course of the curve igN m beginning with

m = 12.5 and continuing it up to m = 19.

As a result, we obtain the following numbers:

m to 8.5
9.5

10.5

]1.5

i2-5
13.5

Ig N., z lg N,, n

0.70
].26

1.85

2.40

2.90

3.40

m to I_.5
15.5
16.5
17.5
18.5

3.80
_.10
4.'35
4.50
4.6o'

This amounts to about 40,000 asteroids up to m = 18.5, which

corresponds appr@ximately to the figure given above.

The application of the theory of perturbations to secular changes

in the orbital elements represents an entirely different source of

information regarding the number of asteroids. As is known, the secu-

lar acceleration of the perihelion for Mars cannot be explained only

by the interaction between different planets, similarly to the secular

acceleration of the perihelion for Mercury. Due to the great distance /68"

of the former planet from the sun, any effects arising from the theory

of relativity are out of the question. According to Lever'ye, the

total mass of asteroids must amount to 0.i of the terrestrial mass, in

order to explain the inequality in the perihelion of Mars. Gartser

found 1/6 of the terrestrial mass; Ostin found approximately the same

figure.

If we accept the estimate given by Lever'ye and Gartser for the

total mass of asteroids, it can be shown that the overwhelming mass

of matter in space between the orbits of Mars and Jupiter must occur

in a state of finely-crushed fragments.

For this purpose, let us estimate the mass of an asteroid M, which

corresponds to its apparent brightness in the mean opposition m.

We shall regard the asteroid as a spherical body having the radius

p at a distance from the sun r and from the earth A.

Let its albedo be A, and let the reflection of light follow the

law of Lambert.

Let j be the apparent brightness of the asteroid for the
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given phase a; j_ - the brightness of the sun seen from the earth

at the distance _R.

It can be readily shown (Ref. 37) that

i

.,"= _ A__,p' lsin _ ÷ (_-- @ cos 4.
j® 3 _ A'r"

In opposition a = 0, and therefore

L =-2 A_p

j® 3 _-G,!

For the mean opposition, we set r = 3R, and therefore A = 2R.

Consequently, we have

J = _ A p' ! A v'

j® 3 36 R* 54 R*

If 6 is the asteroid density, then its mass is

3

Excluding p, we have

'"54',_L R, = _.A'I, 4

Replacing the brightness by stellar magnitudes, we find:

M = l0 'l' (mQ -- m) 54'/--_*4 _R s.
A'I,

It is relevant to set

A = 0,3; _ = 3; R = 150000000 I(M.

We ob rain

A4 = lO". lO'l, (ra® -ra) grams

This formula provides, for example, the following logarithms

of the asteroid mass for different values of the apparent stellar

magnitude m (assuming ms = - 26.5):

m IE N m lg N

3.5
8.5

13.5
18.5
23.5
28.5

26
23

20

17
1.1
11

33.5
38.5
43.5
48.5

8
5
2

--1
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If the mean stellar magnitude of asteroids pertains to the unit

of distance from the sun and from the earth, then we must set

r = A = R, and we have

M = I0'1' (me-- m) R'4______ ,t'/, grams
(2 t)'/,

i.e.,

M=4.5.104,.lO.t.(m®-m) grams

On the basis of this formula, we can estimate the total mass of

asteroids, whose number we can estimate with a correction in

conformity with the estimates of Hubble and Baade. For each unit

interval of stellar magnitude Am = I, we obtain (Table 8)

m

9
I0
I!
12
13
14
I5
16
17
18

TABLE 8

No. of | Asteroid

ast_oid_ Mass M

13
53

179
544

1 716
3 800
6 -_00
9 800
9 200
8 200

5.0.10"
! .3. I0 ;t
3.2.10 't
7.9.10 TM

2.0 • 10"_
5.0. ]0 x'
1.3. IO:"

3.2.10 l
7.9. ]0:7
2.0. IOt'

Total Mass

Total Mass

AN-M

6.5- 10t,
6.9. IOt*
5.7 • 10"
4.&5- ]0 n
3.4- 10 I*
].9- lO"

8.2- I0 _"
3.2- |0 sl
7.2- IOu
].6" 10't

On the other hand, the total mass of an asteroid ring, defined

as 0.i of the terrestrial mass, amounts to 6-1026 grams.

An asteroid having an apparent magnitude of 19 mg has a radius

of about 3 km in diameter, and represents the observational limit

utilizing the most powerful, present-day devices at this distance.

The Table given above shows that the total mass of individual aster-

oids up to the 19 th magnitude is only about 1% of the total mass of

the asteroidal ring. The remaining 99% must occur in a more pul-
verized state.

More detailed conclusions cannot be substantiated. It is

apparent, however, that if we formulate the problem of determining

the limiting stellar magnitude, corresponding to the total mass _q

of the entire asteroid ring, on the basis of equation

AI -- dm -= :_._,
dm

rn I

/7O
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then - even attributing a maximum value to MdN - we obtain im-

probably large values for m, with which the equation loses any

meaning.

On the basis of the preceding statements, it can be asserted

that not only is the overwhelming portion of the asteroid ring in

the form of fine fragments, but also these finely-crushed fragments

are distributed according to an entirely different law than is the

case for large asteroids. The reason for this can be found in the

fact that these particles are crushed additionally as the result

of collisions. The finely-crushed particles which are formed

during such collisions are thrown out into space, in all proba-

bility, at a small velocity with respect to the asteroid, and

gradually occupy space. The probability for the collisions must

be approximately proportional to the total surface of the corres-

ponding asteroidal bodies.

Small asteroids are of significant importance in this respect.

Let us estimate the total surface of asteroids having different

categories of brightness.

On the basis of the preceding formulas, we have:

p" = 180 R" 10'/' Ira®- m),

where

toO= -- 26.5; R_=2.2 • 102' CM t.

For different: m, this yields:

m p,I psH m P' p_N

9

IO

II

]2

13

14

6.3 10 ta

2.5 10 ta

! .0 10 ta

4.0 10 t"

] .6 10 t2

6.3 |0 tz

82- 10 t-`.

132. l0 t_"

179- l0 ta

218- 10 a

275 • 10"a

2;;9 • I0'

15

16

17

18

19

2.5- I® n

1.0- l® t*

4.0- 10 !°

1.6- I0 l°

6.3- 109

157- 10 Is

98- I®ta

37 • I® ta

13- I®ta
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This total surface is of the same order of magnitude as the

lunar surface, since for the latter we have

p2=16.1016 cM 2.

For smaller asteroids, the total surface must be much

larger.

Let us estimate the total surface and mass of small planets

within the limits of the 19-48th stellar magnitude, and let us

assume that the same total mass - equalling 2.10 21 grams -
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corresponds to each interval of stellar magnitude.

We have:

m=9--18; Y.MAN=3.10 _-4r; E_AN= 1.4.10 t6 c_ _
19--28 2. 10es 4.2- 101.
29--38 2- 10z-* 4.2- I0_e
39--4_ 2. ]0 't 4.2- 10_e

It was shown in the statements above that approximately the

same total mass of asteroidal matter corresponds to each interval

of stellar magnitude. In this case, the total surface of these

asteroids must increase per each i0 stellar magnitudes by approxi-

mately a factor of one hundred. Because the overwhelming mass

of the asteroids must lie in the region of weak magnitudes, it

is clear that their total surface must be enormous. Thus, the

numerous asteroids which are less than a kilometer, or even a meter

in size,are primarily the ones which disintegrate during subsequent
collisions with meteors.
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CHAPTER 6

Effect of Asteroid Disintegration

Various considerations lead to the conclusion that a dust-like

substance is continuously accumulating in the solar system.
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In particular, a study of the photometric and radiometric proper-

ties of the lunar surface shows that the planets which have no atmos-

phere are surrounded by a thick layer of dust. It has been known for

a long period of time that any element on the lunar surface reaches

the greatest apparent brightness only during the full moon, when a

reflected light ray coincides with the line of vision and when, conse-

quently, there are no shadows. For other positions, which even corres-

pond to the normal incidence of light, the apparent brightness of a

surface element is much less. This fact can be interpreted by assuming

that the lunar surface abounds in irregularities, the majority of which

cannot be seen even by the most powerful telescopes, but which, never-

theless, reflect the shadows and lower the surface brightness. The

floor of the lunar sea - which seems to be completely flat in a tele-

scope - must be spirated with cracks or can be pitted by extremely

small craters. On the other hand, observations on the temperature

change on the lunar surface during lunar eclipses definitely show that

the thermal conductivity coefficient for the lunar soil is negligible

(Ref. 38), at least i000 times smaller than the thermal conductivity

of grass, sand, or granite. Not one terrestrial substance, in which /74

heat is propagated by molecular transfer, can be even remotely com-

pared with the material comprising the lunar surface. In order to

explain this incongruity, it must be assumed that matter on the lunar

surface occurs in an extremely disintegrated state, and that heat is

transferred by directradiation. Only a pulverized substance, located

in a vacuum, can have such low thermal conductivity as the lunar sur-

face.

Since the photometric properties of the lunar surface do not differ

significantly from the properties of Mercury's surface, it can be

assumed that all the planets which have no atmosphere are surrounded by

a layer of finely-crushed substance, are extremely irregular, and abound

in a great number of depressions.

This cosmic dust which covers the surface of planets was not formed,

apparently, when they first existed. It must have gradually arisen as

they evolved.

It is natural to think that the same cause underlies the origin of

_6



cosmic dust on the surface of planets which have no atmosphere, in

the narrow zone of the asteroidal ring, and throughout interplanetary

space surrounding the sun. This cause can lie in cosmic meteors,

which are passing through the solar system, continuously impacting

on the surface of the planets. These meteors, which have a very

high kinetic energy, gradually break up the hard rocks which comprise

the surface layers of the planets having no protective atmospheric

layer. If a planet is sufficiently large, the dust which is thus

produced remains on its surface, and gradually accumulates from cen-

tury to century. On the other hand, if the force of gravity on the

surface is negligible, the rising dust enters interplanetary space

at a large or small relative velocity, with respect to the planet.

The intensity of this process, by which interplanetary space

accumulates dust, depends on the probability of the planet encoun-

tering meteors, and primarily occurs in the region of the asteroidal

ring because - according to the statements given above - the total

surface of small asteroids is extremely large.
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Depending on the magnitude of the relative velocity, the ejected

particles are propagated to a greater or lesser extent in all direc-

tions from the asteroidal zone, and even occupy all of interplane-

tary space under certain conditions. If this process takes place

very slowly, the role of radiative deceleration must be taken into

account.

From this point on, we shall base our discussion on purely

dynamic considerations, assuming that each particle moves around the

sun exclusively under the influence of its attraction.

Let us postulate the following model for the formation of a complex

of cosmic dust comprising the zodiacal light. Let a planet move around

the sun on a circular orbit, and let dust particles be ejected from this

planet continuously and uniformly in all directions with the definite

velocity v 0. This process continues for a period of time which con-

siderably exceeds the duration of this planet's rotation around the sun.

It is necessary to find the relative density of the ejected matter at

any point in interplanetary space. It is apparent that the complex of

matter which is produced will have rotational symmetry with respect to

the normal of the orbital plane which passes through the sun. Due to

this, the same result is obtained if the density of matter at a definite

point in space is found either as the sum of the densities produced

by each orbital element of the generatrix planet, or as the sum of the

densities taken at each circumference element perpendicular to the axis

of symmetry of the model and which are produced by only one orbital
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element of the generatrix planet. Let us adopt the latter model,

fix the position of the planet on its orbit, and pass through it

the x-axis with the origin at the sun S. The coordinates of the

planet 0 will be R, 0, 0, the same coordinates of the point P

at which the density x, y, z is determined.

According to this, we must determine the density at any point

on a circle passing through P, with the axis coinciding with the

general axis of symmetry for the system SZ.

The elliptical trajectory passing through P is determined by

the initial conditions, for which we take the initial coordinates

and velocity with respect to magnitude and direction of the ejected

particle. Since the initial coordinates, which coincide with the

position of the generatrix of the planet, are fixed, for each

value of absolute ejection velocity v I we have only two parameters

Cl, c2, which determine the described trajectory. Let the

ejection take place at the moment t = 0. During the time t, the

particle reaches P(x, y, z), so that its coordinates will be single-

valued functions of the parameters Cl, c2 and the time t. We thus

have the functions x(t, cle2) ; y(t, cle2) ; z(t, CLC2). For

certain other values of the initial parameters, we shall have

x (t, cl+ac_, c,),
x (t, q, c2q-ac2),
x (t, ct+ac_, c, +acJ.

Thus, we obtain four points in space, which differ very little

with respect to position and which are reached by the particles

simultaneously at the moment t, but for somewhat different values

of the parameters.

These points form a parallelogram within small quantities of

the second order. The trajectories of contiguous particles, which

have almost the same velocity v, pass through the apex of this

parallelogram. Per unit of time, the particles describe a paral-

lelepiped, whose base represents the area of the given parallelogram,

and the length of the generatrices - the velocity v at a given point.

The volume of the parallelepiped characterizes the degree to which

matter is pulverized in space, and the greater the density of matter,

the smaller this volume.

Let a particle be ejected for definite values of the parameters

cl, c2 and pass through a given point in space x, y, z. Let the

probability for these parameter values be

Pt, P_.

The resulting density of matter in space is proportional to

/76

/77

_8



(i)

X, El, x2, XI2 designate the coordinates for the parallelogram

apexes. The factor a3/2 is introduced in the denominator because

the orbits are independent of the mass of matter.

Let matter be continuously ejected from the producing planet

for a rather long period of time T.

Particles, which have once passed through the volume in space

under consideration, will again pass through it after expiration of

the time • - the period of rotation along the elliptical orbit -

and in the interval T such passages will be

T
n_ _p

which is, generally speaking, an arbitrarily large number. Thus,

all of the hyperbolic orbits, which can provide only one single

passage at most, can be completely disregarded. The mean density,

which is determined for the entire interval under consideration,

will be proportional to n or _T .
T

According to the third law of Kepler,

4_'a_------ OM

and, consequently, 2_a,i,
I

which determines the factor a 3/2 in the denominator of the density

expression.

Let us examine those velocities with which particles are

ejected from the producing planet, which enable them to approach

the sun. In order to do this, the ejection velocity must be greater

than the orbital velocity of the producing planet.

The origin is located at the sun S; the x-axis represents the

radius vector of the planet for the moment of ejection; the y-axis

is directed parallel to the tangent in the direction of motion for

the planet; the z-axis - perpendicular to the orbital plane.

The geometric location of the vector points of relative

velocity is a sphere, described by the radius r 0 of the planet

from its center. The geometric position of the vector points

for the absolute particle ejection velocities is the same sphere
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with the initial point located at the distance u from the center,

in an opposite direction to the motion of the planet O. Let us

use _, _ to designate the angles which determine the directions

of the relatlve velocity vectors with respect to the planet,

while _ to the longitude and _ corresponds to the latitude. For

the absolute velocity components, we have:

v_' = vo cos _ cos _; v v' --_vo cos _ sin _-_u; v s' _-_o sin ?.

The orbital plane of the ejected particle passes through the

points O, S, P and intersects the sphere which represents the

geometric position of the points vo, along the circumference of
a small circle at the distance u sin i from the center.

Since the orbital plane passes through the radius vector R

(points 0 and S), the inclination of the orbit i is determined

by the simple expression

;z
tg i = --.

In the orbital plane of the ejected particle, the geometric

position of the points for the absolute velocity vectors is,

apparently, a small cJrelp h_T_n_ the radius

_// • u2_2"V = _/Vo" -- U_ sin" t -= "0°_-- y' + z'

The initial point of the vectors is located in the plane of

the circle at the distance u cos i from the center. By deter-

mining the inclination of the particle orbit, we can find the

magnitude of the initial absolute velocity, join the vector at a

certain angle X up to its intersection with the given circle.

We shall stipulate that the angle X is measured from the extended

radius vector.
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The application of our general formula (i) for determining the

density of matter at any point in space and for determining the

system of spatial isophotes is a very complex problem, which en-

tails great amount of work in performing the numerical calcula-

tions. We shall confine ourselves to calculating the distribution

of density in the orbital plane of the producing planet, and

also in the direction of the axis of symmetry in a perpendicular
direction.

Not wishing to restrict the discussion, we can assume that

the radius of the planet orbit, the mass of the sun, the gravitation

constant, and consequently the circular velocity of the planet
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equal unity

R=I, _=1, 0=1' tt=l.

The direction of the relative velocity vector is determined by the

angles _, O. Let Vl be the corresponding absolute velocity. We

have

_i= Sin++ ¢ _0, - s,n' +;

and in addition, for the semimajor axis and the parameter we obtain

!=2-- vl_; p=vt2 sin' _.
a

Let us examine the point in the orbital plane with the coordinates

r, e. The true anomaly e 0 corresponding to this point is given by

the expression

r: P
! Fe cos (00-- 0)"

In addition, we have

e cos 0o= p l; e-"= l P
a

Let us now examine the contiguous point of ejection
/80

The particle will describe an orbit which is adjacent to the pre-

ceding one. The ejection velocity v I + dvl differs from the

previous one by the quantity dv I, where

( sin* )cos*d*.d_,= 1 4 Z _.'-co_' ÷

We can determine the new values

a-Fda, p+dp, _,-FdO.

The corresponding orbit intersects the extended radius vector r at

the contiguous point at the distance 6r.

It is apparent that

r4-_r=
p-}--dp

1+(e+dO cos (o,+a%-- _) '

and the angle 0 remains positive. Within an accuracy of small

quantities of the second order, the new trajectory will be parallel
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to the previous one and passes at the distance

_r sin_,

from it, where B is the angle between the tangent and the radius

vector,

!

sin_=(ap)_ (2ar-p ')

Let us now examine the ejection of a particle at the angle

_, d_, so that the particle slightly leaves the orbital plane of

the planet. It is apparent that within an accuracy of small

quantities of the second order, it can be assumed that the absolute

ejection velocity is the same as the previous one. 0nly the in-

clination of the particle orbit is changed by the quantity

but in this orbit the particle describes absolutely the same

ellipse. Thus, in order to determine the new position of the

particle, it is only necessary that the ellipse, which was deter-

mined previously, turn at the angle dl around the radius R. The

point, corresponding to the previous r, 0, has thus increased by

dz:rslnOdi=rsin 0 c_
sin

We thus obtain three infinitely close points in space, through

which almost parallel trajectories pass. The corresponding volume,

described per unit of time, is

r sin 0 d__y__sin [38 r_,
sin d?

which corresponds to the ejection of particles at an infinitely

small solid angle d_d_.

Let P_ be the probability of ejection per unit of solid angle.
The density of matter in space will be

P, d? d d/slnd/ (rslnOsln[3v ar a't,d? dd?) -'do?

If it appears that for two or more values of _, the particles

pass through the same volume of space, we shall take the sum of the

given expressions. In order to obtain a definitive value for the

density at a point located at the distance r from the sun, it is

necessary to average over all the values of the angles 0 , regarding

partial densities as equally probable. The total density will thus
be

/81
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" _-_ PCSin_ \

D _ / _- .... dS,

where 0 changes from 0 to 2_.

In practice, it is more advantageous to perform calculations

for the argument _, and not 0 . Let us assign several values to _.

Assigning one definite value to the relative velocity v0, we can

calculate several values for the corresponding auxiliary quantities: /82

_0x ,'0z v S "-04

a I a_ a S a,

Pl P2 Ps P4

_o_ 802 Oos 0o,

01 82 _a 8_.

We can thus establish the numerical relationship between

and 0 and, ultimately, we can use 0 to express all the

quantities depending on _.

We must now average the density over all values of the

relative velocity v 0. Let the probability of v 0 be P 0- In a
v

special case, which will be considered at a later point, we can

assume that

Pro = Ae- _"(". - v,,,),; %,,.._ O,

assuming that the relative velocities are grouped primarily

around a certain mean value Vm, which can be rather small.
we finally have

Thus,

Y_-= f DPvo dvo.

The problem has thus been primarily solved.

The method which has been presented, however, is too complex
for numerical calculations.

Another method can be proposed, which is simpler in the numeri-

cal respect and which leads to the same results with respect to the

density distribution in the plane of the generatrixplanet. The

idea underlying this method is as follows: Instead of infinitely

close trajectories corresponding to different ejection conditions

for a given position of the planet, we shall first examine infinitely

close trajectories with the same elliptical elements, but which are

produced from very different _lements in the planetary orbit.
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We shall thus begin our examination with trajectory orbits

of particles which are produced under identical conditions from

all points on the planetary orbit.

Let us examine a group of elliptical trajectories in the

orbital plane with identical values of a and p. Let us take a

point A at a distance r from the sun, lying on one of these

trajectories. Let us turn the axis of this ellipse at an infinitely

small angle 8dx in the orbital plane. The point A shifts to a new

position B, through which a contiguous trajectory passes. Attention

should be paid to the fact that all vectors of r pass through S and,

consequently, represent a bundle which separates into space. Due

to this, the factor r-I enters into the density expression. The

shortest distance between contiguous orbits is evidently,

ABcos _=r cos _dX,

where _ is the angle of the tangent and the radius vector.

The volume V, which is described per unit of time by particles

which move along contiguous trajectories, changes with distance in

proportion to the expression

rcos _.r.v.

According to the second law of Kepler,

and therefore

/83

As was indicated above, the condition must be introduced that the

total mass of matter in orbit does not depend on its elements. There-

fore, for partial density we obtain the simple expression

! 3

D = tg_r- 'p a

Such a density would occur in a complex of particles moving

exclusively along ellipses with the elements a and p. For a given

relative velocity, this corresponds to one definite value of the

ejection angle _. If the ejection probability for this angle is p_,
then the resulting density is given by the integral

D= tg_P+a " p _ r-"dd/.

/8__..!_4
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In order to obtain the total density corresponding to all

possible velocity values, it is necessary to take just one integral.

It is not difficult to calculate the ejection probability as

the function of the angle y of the absolute velocity vector. For

relative velocity, all ejection directions are, by definition,

equally probable. Let P be the ejection probability with a certain
Y

absolute velocity v I at the angle y. It is apparent that the termi-

nals of all the vectors entering the zone cos ydy also fall into the

zone cos _d_, which is investigated from the center of the absolute

velocity vectors. Consequently, we have

P, cos +d'_ :: P_ cos ydy,

from which it follows

However,

p_.: p,, cos +a_
cos yd I

vo cos + .... v_ cos y.

Therefore, assuming that

u = k, "_ = k sin y -[- ¢ 1 -- _'- cos t y '
V o V,

we find

P't ---_ vd"sin "_
u

V_ _ sin ,,_,-L V_t -- COS + COS "I
t_ t

or after various transformations

Py
' (k sin "[--,' _/r i -- k' cos: "f)'sin y

/ [ -2-
1.- cos*""I k'- sin s "l-l- | -- kt c°s* 1_'2 _ sin "I(1 -- k P-Cost "I -{-

•-t-k cos'- "b

This expression is very complex. If k = i in the special case, i.e.,

,00" " II,

we then have /85

p__= 4 sin: _cos I =: 4 Sill y.

-- l / I'-- 4 sin _ I cos-"l[+cos-'.l.

If k differs slightly from unity, so that k = i + e, with e << i,

then - retaining in the expansion only the first power of e - for
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angles y which are not too close to 0° , we find that

ctg'7_¢].Pv=4stny[l+(1- ctg2 T - cos_,}

On the other hand, if k = 0, we then have

Pv = const.

If k is small, then - as can be readily seen

Pv = 1 --[-2 k sin T.

Finally, taking the fact into account that

COS2 _---_ 2 ar -- r:-- 2 ap ; tg z [3= ap
(2 a --r) r 2 at" -- r' _ ap

we find the definitive expression for density in the form

D= _ P't dl'

3 ar pr 2 ar -- r I -- ap

In order to calculate this integral, it is most advantageous to

assign different values of y, calculating the auxiliary values by

the formulas given above, which can be combined for purposes of

convenience:

'V, =sin y-I- Vvo'-COS_ y ; l__ = 2 - v,'; i/rp':'v, sin "I-

It is interesting to note that the cosmic dust density approaches

infinity at the orbital distance of the generatrix planet for any

values of the relative velocity v 0 _ ¢_. The case of v 0 = i

represents an exception to this, when the density at this distance

remains finite, although it reaches a maxlmumvalue. In actuality,

if v0 > u, the probability Py for the ejection of particles at the

angle y does not become zero at any point. Consequently, the problem

of the finiteness of the integral expressing the density value can

be reduced to studying the behavior of the pole

!

(2r_r2a.., __p) 2

/86

Let us investigate the function

[ (y)-----2 r -- r2 a-' --'p.
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Let Y0 be the special value of y, for which f(Y0) = 0. If

Y - Y0 = c is small, then the function f(T) can be expanded in series

in powers of

f (_)=f(_o)+_ f' ('to)+ _'f" ('to)4-. "
2--

In order that the integral is finite, it is necessary that the

first derivative does not become zero simultaneously with the func-

tion itself, i.e., that f'(T0) # 0.

If, at any rate, the first derivative becomes zero, then the

integral for the corresponding value of TO becomes infinite.

We have

and
2 r (1 -- r)+(r °-- sin2Yo)(sin To+ V"%_-- cos_To)2=0

./' (a'o)= cos -r(sin"r-i--V ¢-'o_- cos' ¥) e (a',Vo),

while F(YlV0) # 0.

Generally speaking, these equations are incompatible, i.e.,

the density integral has a finite value• However, for r = i the

first equation yields

cos Yo (sin To -{- V '% -- cos %)'=0,

from which it follows that

To=270 °,

since for v02 _ 3 the 90 ° angle is excluded as it does not conform

to an elliptical orbit. In addition, for the same value of Y0 the

second equation becomes zero. Consequently, for r = i and v_ _ 3

the integral has the form

d_ ;

and for e ÷ 0 it approaches infinity, similarly to the logarithm.

The case v 0 = u must be analyzed separately. The ejection proba-

bility will thus be

P+=sin T,

/87
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and therefore the integral is transformed into the form

-- I (2 cos' _ -- I)'l,d cosDr--_2 ]/r _ r, (2 cos.. _ _ l) _ 2 (cos= _ __l) i"

For the special case of r = 1, we find

4

Or= (2cos -' - I)'/'
o

This integral is finite, and can be readily calculated. It will be

shown at a later point that the value of this integral, for r = I,

represents a maximum as compared with contiguous distances from the

SBQ.

It has thus been demonstrated that no matter how the asteroids

are broken down or no matter what the ejection velocities, a sig-

nificant portion of the cosmic dust must be concentrated in the

region of the asteroids. Thus, this region in the solar system,

along with individual small planets, must abound in pulverized particles

of matter.

This provides an explanation of the zodiacal band which occupies

the entire sky and which can be seen quite well under favorable con-

ditions, especially as this band, which is visible in spite of the

great distance of the reflecting particles, is spatially different from

the other portions of the zodiacal light due to the great number of

these reflecting particles.

In actuality, it is quite probable that the so-called counterglow

is not genetically related to the entire zodiacal band, and that the

latter is equally not related to the wide cones of zodiacal light.

Let us now calculate the density distribution of cosmic dust

in the orbital plane of the generatrix planet.

/88

We shall start from the basic integral

--Dr _:--2 C Pv d.L ...... [__

J _/2r_r_ a - I _ a'l,

i

First of all, for each definite value of relative velocity

through equidistant values of the ejection angles, we shall calculate

the auxiliary functions appearing under the integral sign. For

example, for v0 2 = 2 we have
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"I 270 260 2_0 240 230 220 210 200 !90 !_0 ]70 !60

d4,
-#'I0.29 0.30 0.32 0.35 0.39 0.46 0.55 0.68 0.84 0.90 1.17 1.3")

Pv 0.070 0.083 0.097 0.112 0.]36 0.177 0.240 0.3"160.5000.707 0.984 I.'-96

aJ 1.829 1.824 1.813 1.791 1.756 |.703 1.618 1.489 i.2931.000 0.3900.040

p 0..1710.]70 0.165 0.156 0.143 0.122 0.095 0.060 0.021 0.000 0.0420.229

It is rather difficult to calculate the integral close to the pole,

where the integrand becomes infinite. The results derived from

calculating D for different v0 2 are as follows:

TABLE 9

• • n,t_l I _,'=2 _,'_a v,_4

0.2

0.4
0.8

1.0

1.2

1.6

2.50 2.55
! .00 t .00

0.43 0.46

0.67 e_

0.32

0.09

1.20

I.CO

0.31

O0

0._5

0.052

0.63

1.00

1.84

.00

1.21

0.41

What is the density of the medium at a very small distance from

the sun?

Let us examine the general case when

•oo _g.

3/2 does not
The probability of Py is everywhere finite, and a-

become zero at any point. For r + O, we have

/S9

while

rS a -' << 2 r

!

o

P ="Oz z sins Y; vt =sln T _Y 'Uos -- toss T

are always finite quantities. Therefore, the angle y approaches

0 °. Let y = _, where e is a small quantity. Consequently, we have

Or", VT:-- (3- e, ('o)"o-
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Figure 4

Cosmic Dust Density in a Complex of Matter Ejected

by an Asteroid.

The important assumption can thus be drawn that all values of y from /90

0 ° to 90 ° are possible.

We have P _.e 2. In addition, when e changes from 0 to e 0 , r

changes from 0 to r 0 = . Therefore, D _- . Thus, at a very small
r

distance from the sun, the density of matter changes in a manner

which is inversely proportional to the first power of distance.

If we take very large values of r and examine the density in a

complex of elliptical orbits which are close to parabolic orbits,

the corresponding values of the angles y will be close to 45 ° . The

first term r remains under the radical in the expression, and there-

fore the density of matter, which is otherwise very small due to the

presence of (2 cos2y - 1) 3/2 in the numerator, will change as

r-3/2 .

Finally, if we examine a complex of hyperbolic orbits and if

we assume that the ejection velocity is very large, then the proba-

bilities of Py can be fairly accurately regarded as constant, inde-
pendent of the ejection angle. In addition, it is apparent that
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a and p are also constant for a given relative velocity.

up to the proportionality factor we have
Therefore,

Dr-_

_0

1 _ d 7 ,

al/2ar--r'o _ t / 1--kSsill'

where

_2 _ Vl|
2r--2ri+rSvi''

and Y0 determines the region in which possible y change

If k _ I, we then have

Dr--

ksinyo=l.

2

] ! d_a l� 2ar--r ! l/ ] --k'sin' T

If k > i, then - introducing the new variable /91

we find

Dr--

sin 7=sin y,,

2.

1 1 I dTt
at'/ 2ar--r' k

_/f I sin-"Tt0 ]__k___

If v I is very large, then k = _ .
r

Therefore,

dT

. I for an
The latter integral assymptotically approaches 2 r

unlimited increase in r. Therefore, at a large distance from the

sun, the density of matter decreases inversely proportional to

the square of the distance.

These are the general results which are attained in a general

investigation of the density distribution of ejected matter in the

orbital plane of a generatrix planet. We can see that at a small
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velocity the ejected matter naturally remains in the zone of the

asteroids, and does not reach the sun. For ejection velocities

which are comparable to the orbital velocity of the planet, the

density close to the sun decreases approximately in inverse pro-

portion to distance. The density decrease then slows down,

reaches a minimum, again increases, and approaches infinity at

the distance of the planetary orbit. The decrease occurs more

and more rapidly, and finally the density assymptotically approaches

zero. For relative ejection velocities of about /3 and for large

velocities in the vicinity of the sun, a rarefication is produced,

whichconstantly increases, and finally the entire phenomenon is
reduced to the narrow asteroidal zone.

It is interesting to note that in the region of distances

0.2 R ' 0.8 R the density distribution for all values of v02 in

the interval i - 2 is almost exactly the same. Assuming a proba-

bility for the ejection velocity distribution which is proportional

to

e-k'°.',k>>l,

we find the resulting density, calculated for all possible velo-

cities, which is close to the corresponding density observed in

the zodiacal light.

Let us now examine the case in which a particle is ejected

perpendicularly to the orbital plane, and let us set ourselves

the problem of determining the density distribution of cosmic

matter along the z-axis. It can be readily seen that in the

given case the absolute ejection velocity does not depend on the

angle _ with the radius vector, and is given by the simple expres-

sion

_,'=_0'-- u'=_o' - 1.

Since the probabilities for all v 0 are the same, the vectors vl in

the vertical plane are also equal and equally probable.

Taking the fact into account that

/92

R---:- I ; /FI= 1; 0--_-_ 1 ; u=l,

we obtain

¢:_sin _ =p.

In particular, for _ = 90 ° we have

_=p _-z.

Let us find p for other angles _.
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Wehave

R [1+e cos (o+_o)]=p,

where _ , _0 represent the amplitude and direction of the major
axis. In addition,

It thus follows that

z [1 -Fe sill (0-1-0o)] =p.

or

,,(,+ :o.
/93

Thus, we find the following relationship between the distance z

on the vertical axis, at the point at which the trajectory is

intersected, and the ejection angle

slnZ oc= (0.5 _-vl-_-z > ___

//0.25 + 1 Jv + 4--7-
I I '''" (2)

-- .I+--! +., . *"

while the plus sign must be retained in front of the radical.

Varying _, we obtain different values of z, and vice-versa.

The preceding expression determines the angle _ in all

quadrants. Forward and backward motion does not play a role

in determining the nature of the orbit. The angle, taken in the

second or fourth quadrant, determines the trajectory inclination,

with intersection of the z-axis, which is symmetrical with res-

pect to the first and third quadrant. This does not influence

the results. Consequently, we can confine ourselves to investi-

gating the angles _ in only one quadrant --for example, the first

quadrant--reading the angle from 0 ° to 90 ° from the extended

radius vector in the direction of the extended z-axis. Let

We have

Z

sin, a¢___._(1 __ 0.5,1v4 ) _1 _ _'/'
• l+v4_ ' _ ]/ 1 -- _-qt-o.2fiaJ4_.
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For small values of v I, we obtain

9
Thus, for different n and Vl, by an accurate formula we find the

following angles a (Table i0).

TABLE i0

0.0 ] 0.1 0.2 0.3 0..I 0.5 0.6 0.7 0.8 0.9 1.0

r
o o

0.00 0.0 18.4

0.01 O.C 18.5

o.o5 io.o 18.6
o.1o {o.o 18.7
0.20 o.o 19.o
0.50 10.0 --

1.00 0.0 21.5

o

26.6

26.6

26.0

27.1

27.7

29.5
32.6

o

33.2

33.3

33.6

34.0

34.9

42.1

o

39.2l 45.0

39.3l 45. l

39.8l 45.7
40.41 46.,5

41.31 47.8

45.0l --

50.51 58.3

o

50.8

50.9

51.6

52.4
54.2

58.8

65.4

{
o

56.8l _3.4

57.01 63.7

57.81 64.6

58.71 65.7

60.7l 67.8

-- , 72.8

71.9{ 78.3

71°6 90°.0

71.8{ 90.0

72.9{9o.o
74.0{ 90.0

ooo90.0

83.2{ 90.0

/9._4__4

Let us now calculate the density of the medium at different

distances from the sun, along the z-axis according to our general

theory. The initial conditions determining the particle ejection

are the velocity v I and the direction angles a and y. The angle

represents the angular distance of the absolute velocity vector

above the orbital plane of the planet. The angle T corresponds to

the azimuth, and is calculated in the orbital plane in the positive

direction of the y-axis and the x-axis.

In the casewhich we are considering, the direction of the

vector v I is determined by the angles a, O, while the ejected

particle intersects the z-axis at the the distance z at the angle 8

- as was shown above.

This angle is given by the expression

where

s,. 8= CE

_12_ - 2 1
Z tl

Therefore, we have

si,12{3--
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where

p =_i 2sinm.

In the same vertical plane, let us now change the ejection

angle by the quantity da. The corresponding trajectory intersects

the z-axis at a point, at a distance dz from the preceding one.

dz
The derivative _ can be readily determined from the equation

given above.

In the case of a small absolute velocity, we have

and therefore

v 2 sin s _:z

d!-=2 sin _cos a 'v_.
d,,

/9___5

Let us now orient the absolute velocity vector in the direc-

tion (a, y + dy), - i.e., retaining the previous inclination to

the orbital plane - which is inclined from the vertical plane

by the angle dy. The particle thus describes an orbit which is

inclined toward the vertical one at the infinitely small angle

dz=dyctg =.

It is necessary to determine the coordinates of the point at

which the corresponding particle trajectory intersects the plane

YOZ. The problem can be solved using the previous relationships,

if they are only applied to the trajectory plane of the particle.

Thus, the ejection angle _ can be assumed to be the same as before

(= = _I), but the velocity has changed somewhat. Actually, we
find

Cons equent ly,

or

where

v,--u cos =d'_+V lu cos=d_r)'+ v_-- u-'

_=v_-u'+",

In the vertical plane, we have

A= 2u V v_ -- u=cos =dr.

0 -- el2 US
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2
Thus, A represents an increase in v I for a deviation from the

vertical plane. Using this new value of Vl, we can find the

distance from the origin in the plane of the inclined particle

orbit. Then, taking the magnitude of the inclination into

account, we can find the desired rectangular coordinates•

As a result, we obtain the following coordinates for the

intersection of three contiguous trajectories with the plane YOZ:

/96

y Z

0

0

z ctg _ _'_

"Z

-.+-q c:•

= + Kd_

The coefficient K, which is of no importance below, is

K= 2 cos _.

,)
The doubled volume, which is described per unit of time in the

spatial region close to the point (0, O, z) by all particles

ejected in the interval of the angles de, dy - i.e., within the

limits of the area of a sphere

will be

dot dy COS _,

d* d_v_ sinzctg_d'r_

or
dz

_'t cos • -- tim dy.
da

Consequently, the volume corresponding to the unit of a solid angle

will be

dz

rO 1 -- ,
dot

For all a and _, the ejection probabilities around the vertical

19__Z_7
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plane are identical. Therefore, the density distribution of matter

for a given v I along the z-axis will be

D- 'I d_ I
V, dza _/' "

Since the resulting density is obtained for all possible

velocities, each of which corresponds to the ejection probability
P _I, we have

D:_ l__ d_pv, cl_, 1.
dz a sis

This expression can be readily calculated by mechanical

quadrature, if we assign the form of the function Pvl"

Let us calculate this for the case of a small absolute

velocity, when it can be assumed - as was indicated above - that

D-- 1 1 1

In addition, let us assume that

P_.= Af k' (_.- _m)";

The resulting density is

•_,. _ _'

while

Thus, we have

_ D dr, 1 d_D_- -,,. _ d% V I d'.

D_CV, d=_ -- a ,o,
J ! dz a ;s

where

a-',',=(2 --v_)'/,, v,_---%2_ 1.

This expression is general in nature.

In the case of small velocities for v I and vm _ O, we have

/98
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Q

S., Vol _'e .D=A / -.1'

or, changing the variables, we have

3

D_-- , V 7_-_d-z--,)'
2

z O.

For practical calculations, we can take

2 z+,

o=f=f+f,
g z z+_

while e << z is a small quantity. Consequently,

D-_- z'/" \2-- t 3 3 z /

2

z4-. .

The value of e is usually assumed to be 0.01 - 0.02. The

first term is of the same order of magnitude as the second. For

example, let us set k 2 = i and k 2 = i0.

As the result of the calculations, we have the following values

for the first and second terms in arbitrary units for different

values of z (Table II).

TABLE ii /9_&_9

,, = 0.04

0.08
0.16

O. 32

0.64

k t =_ ! .0

i2.8

5.79

3.52

1.6_
0,259

21.0

13.56

6.87

3.29

/ .07

kt = I0.0

8.13 [ 7.95

2.59 ' 4.40

0.78 I 0.66

0.0826 ] 0.0423

0.0007911 0.00262

Let us conditionally assume that the density equals unity for

z = 0.16. For the same cases, we have the following definitive

values of the resulting density (Table 12).
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TABLE 12

k t =_ |.0 k t _ |0.0 • i

/

z = 0.04
0.08
0.16
0.32
0.64

6.49
2.61
1.00
0.33
0.O64

9.3
6.9 "

0._I :
0.00118

Using the very same method, one can calculate the density

distribution according to the accurate formula for all velocities

corresponding to elliptical orbits. It can be2concluded from the

Table, which combines _ and n, for different vl, that a result is

obtained of the same order of magnitude, because the change in v I

points only slightly to the given dependence.

We thus arrive at the conclusion that it is absol_tely possible

to represent the observed density distribution in the zodiacal light

both in the elliptical plane, and in the direction which is normal

to it, if it is assumed that particles of the zodiacal light are

ejected into space by asteroids which are continuously bombarded

by meteors which are flying into them. There is no doubt that

interplanetary space is enriched by a similar mechanism. The

question only arises as to whether this mechanism can provide the

appropriate relative ejection velocity, which must exceed the or-

bital velocity of the asteroids and, in addition, which must be

contained within rather narrow limits.

The weak aspect of the theory lies here. It is fully possible

that the purely dynamic considerations which have been developed

in this work are not completely adequate, and must be supplemented

by introducing radiative deceleration, which forces the particles

to approach the sun gradually at very small distances. In this

way, the necessity of assuming large ejection velocities is avoided.

However, it is first necessary to examine the general properties

for the motion of a dust-like particle with respect to the sun,

which is subjected not only to the force of gravity, but also to

light repulsion.

/I00
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CHAPTER 7

Motion of Cosmic Dust in Interplanetary Space

i. The problem of the motion of cosmic dust in interplanetary

space is very important in cosmogony, and is also important for the

formulation of a theory on the structure of the interplanetary

dust medium. Let us examine the problem of a change in the ellip-

tical orbital elements of an individual dust particle moving under

the influence of solar attraction and light repulsion. It is

assumed that the dust particle is neutral, and is not subject to

the influence of an electric or magnetic field. It should be

noted that, in fact, we are not at all interested in the motion

of a dust particle along an orbit, but only in the secular change

in its elements. Evidently, it is not possible to investigate

the elements of an elliptical orbit _, _, T, - i.e., the distance

of the perihelion from the node, the longitude of the node, and

the epoch. In addition, because both forces acting on the dust

particle occur in the same plane with the velocity vector, the

orbit inclination apparently remains unchanged, and therefore does

not require an investigation.

We shall thus confine ourselves to investigating the secular

changes in the elliptical elements a and e, the semimaJor axis,

and the eccentricity.

2. Let the origin be located at the sun, and let the particle

move in the X, Y plane. In a rectangular coordinate system, we

have two equations of motion:

dtc - d_y

where X I, YI are the components of the attractive force and, F, X2,

Y2 are the components of the light repulsion force F2.

The following apparently holds

k:Mmz k'Mmy
X1= -- i; Yl =-_ r _ "

where M, m are the mass of the sun and the particle, and r is the

radius vector.

We should note that the direction of the vector F2 and the

radius vector r comprise a small angle y, which represents the

!101
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angle of annual aberration

y---_ sin tt,

where u is the angle between the dlrectlon of the particle

velocity v and the direction toward the sun. For the earth, the

maximum value of y is

- _' lo 000=20.'°5:

It is apparent that

• x y
X..,_=P2 cosy S + e;sm r-Z- ;.

..i, 2.
Yz:-F2c°s ¥ r --F, sin y r

The magnitude of the repulsion force F 2 is determined by

the amount of energy falling on the particle from the sun. If 0

is the particle radius, and E 0 is the amount of energy falling

per I cm2/sec at a distance of r0 from the sun, then

cr_ }.i'

is the force of light repulsion for an absolutely black particle.

With sufficient accuracy, we can set

cosy=l; slny=y,

Since light repulsion - similarly to gravitational attrac-

tion - changes in a manner which is inversely proportional to

the square of the distance, it is expedient to introduce a "re-

duced" mass of the sun M'

ck'-tn .... 4 ck'p_

(_ is the particle density).

Therefore, the equations of motion

d_x

dt _
k'Mmx jI Bx . By v sin u

r_ _t r,_c ;

d' v k*Mmy By bx v sin u
In -""=-_=-- ]

dt z r z r a rSc

can be transformed to the form

/103
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m--

d_x k_M'tnx By v!s u

dt I r s r:c;

_- __ k_"M'my Bx v sin' u B _ _-'r_ Eo .dry

dl t r a "' rSc " c

We obtain the following combination from these equations:

d Iy dx _)¢ __-
-- m Oy_y_ Bv sin u
dt aft aft / , rc

'_;a--t -_- .\7d7/ J -, r_ -Ti--k Y ait& +

-t 13 v sinu(' dx dy
-rq- 7 \y -,_ -- x ,u 7

or, changing to polar coordinates, we have /104

ld

2 dt

x_-r cos% y-_-r sin _

Y-. (mr" ar _--_- Bvsii, u
dt \ dt J, rc

_ __ (my2) : k'-M'm 'dr By sin tt
d9

r" dt r_c dt

The angle u between the tangent and the radius vector is

given by the relationship

from which it follows that

rd9
P

"dr

Consequently,

sin n :- r__.d_
_o

v d#

Therefore,

73Sii1 U_-----r .d_ .
dt

-- {mr _,.1=_.___.__.dt k # J c dt '

l d.[lll_O,l:_ k'M" m dr B_.( <t_,_,
2 dt X # --r.. dt c \ dt / "

8e

(Ii)

(12)



The first equation can be readily integrated

mr'-_-t + B _,-_const.

At an initial moment of time, it is always possible to set

_0=0.

Therefore

r2 d_ __B9 _ (r' d?
--Z- ±_ - \ "A-/o"

The first term of this expression represents the areal

velocity of the particle. This areal velocity continuously decreases /105

in the same measure that the second te_ increases - namely, it is

proportional to ¢. For each revolution along the o_it, no matter

what its dimensions, the areal velocity decreases by one and the

same quantity

2=B

mc

If we define the initial areal velocity as

we can then find the amount of revolutions which the dust particle

performs along its orbit, which turns gradually in a spiral-like

manner until it falls into the sun. In fact, as the sun is approached

Therefore,

2,,rib = _[ .t_2M,ao (1 -- e_) ,
mc

from which it follows that

or

Vc k'M'.o (! -- e_)mc_
• ,t

2_'p=ro2Eo"

Vr k'-M'ao(t --e_ 8
.,_ pBc=

4r_20E o 3
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We have

4_r_E 0 = 4-1033 erg/sec - total radiation of the sun

c2 = 9-1020 cm2/sec2; M'-_M----

• . l

•3 . 4,_.E,

•1 5 _ck'p_

Let us set, for example,

o

/106

6----1;. ao_1.5.lOlS see;* eo=O;

k_6.7.10-8i

M,__.2. 103, (1 10-4'_.
1.7p /

If 1.7p = 10-4 cm - i'e., the particle diameter is IB -

then M' = 0, and the attractive force is counterbalanced by the

repulsion•

J
Figure 5

Motion of Meteoric Dust in the Solar

System.

/I02

We shall assume that the particle diameter is at least

several tens of microns.

For 20 = i0_, the order of magnitude for M' remains the same

as for M, so that for approximate calculations it can be assumed

that

We have

_I06

If 6 = i, 0 = 10-3 is the smallest assumed quantity, then

* Translator's note: "sec" incorrect in original. Should be "cm"

(i.e., number of cms. in AU).
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n-=2.7.]6,. "

In general, even a small particle must perform hundreds of

thousands of rotations in order to fall into the sun, beginning

with the distance of the terrestrial orbit.

We shall introduce the elliptical elements a, e as new variables

in equations (ii) and (12). We have

_ m _f k_Af a(l _ e=)_- L- B d_
c dt

and
d /mk_-M'_ B / d? h=

t _-:-) -7 t--z-,)-

d_
The quantity _{ represents the instantaneous angular velocity

which decreases periodically throughout a revolution along the orbit,

and changes in a secular way when the shape and dimensions of the

orbit change.

Since we are only interested in the secular changes a and e,

we can perform preliminary integration with respect to the period
of rotation T.

For example, we have

I d k,M at=__'( d, '_,dt.-_t \ 2a " _ mc k dt ) • :"
o o

/i07

It was shown above that a very large number of rotations

along the orbit is necessary for a significant change in a. The

magnitude of a does not change significantly throughout the

period of one rotation T. Therefore,

i

d ?,M,_A=_ f (.d,D'd.t---n
_fT_7=J' -7 Jt_j ....m:

0

and similarly for the second equation

r- '

We have
T

o o

8_



be caus e

r" _ :Vk_M'aO -- eD.

But

r--

ai(i - e*')

l-]-e cos (? -- ?o)

and therefore

r 2n.

r \ at dt ra'0--'e')' .j [1--]-ecos(_--%)lO-d_.
o o

After simple integration, we obtain

T

"_ ff (d'-_--) 2"d[-. I/k-7-M-;a(1Tat {1 _ e')t-e_)" 27r(1\ - l-i_) .
o

But

21: V k_M '

T a "1'

Consequently,

and

T

o

• et

da 2B (I -JI2",'-2-")

dt mctl 11 r--eS) '/'

In the same way we find

fl_q_l/-k_A4,a(1. -- eZ)= ._ _ •'1/ k'M'
dt " " ' me _l" '

from which we obtain the following, taking (13) into account:

de 3 Be 1

dt .2. mca t

(1 -- et) 112'

The element of time must be first excluded in order to

(13)

(14)

Q

/108
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integrate equations (13) and (14). We obtain

tie 3 ! t (l_eZ) '
da 4 a e'

_+-_--

from which it follows that

e (I -- e')

Performing elementary integration, we obtain /109

or

a
•_=-.Z./ ' 5.--_--7 (15)

It can be seen from equation (14) that the eccentricity of

the orbit must continuously decrease as a result of radiative de-

celeration. If e = 0 initially, then d__ee= 0, and the orbit always
dt

remains circular. Expression (15) shows that each orbit is ini-

tially changed into a circular orbit with any eccentricity only

for a = 0. Particles moving along elliptical orbits exist for a

somewhat shorter period of time than do particles describing
circular orbits.

It is also interesting to note that the determined dependence

between a and e expresses a general law of motion in the presence

of radiative deceleration, and does not depend on individual

properties of the moving body. It does not matter whether an

asteroid or an insignificant dust particle moves in the field of

radiation and gravitation; the relationship between the elements

a and e is the same for them. The only difference lies in the

fact that the asteroid orbit changes incredibly slowly, while the

orbit of the dust particle changes comparatively rapidly•

If we know the dependence between a and e, we can integrate

equations (13) and (14). For example:

d_ee_- 3 .Be. , eo,/'(1 --g')'
dt 2 me !

(l :- e')_-,,2o¢', (1 - e_)'
or
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=-- K (! -- e') "1''de.

dl p'l,

where

3 B' e.'/1 I

:<::=_"_ 4 o 0';
B :- =P',t]E__,

<

It thus follows that

eo
i,

g
(| " e2) Vl-e'

= K (t-- to)

or, setting e 2 = x, we have

3

C dx lfx ,=2K(t--to),
•_ v-4 v'o-,,)

e |

It is not at all difficult to calculate the latter integral

by the numerical method. As a result of the calculatlons, we have

2K (t -- to).

TABLE 13

0.9 0.8 0.7 0.4 0.3 0.2 _ 0.I
,i

0.8 1.0301 --

0.7 I. 47210.442

0.6 1.69910.669

0.5 1.82710.797

0.4 1.90210.872

0..3 1.94510.916
0.2 1.96510.936

0. I !. 97410.94.5

0.0

0.227

0.355

0.430

0.474

0.494

0.503

0.6 0.5

0. 121

0.20:0.0749

D.24_ 0.1177

I1 96 0.139_

0.275 0.148_

O.04281 "

0. 064910. 0221

0.073910.0311

,9,61o9,,,02,71o,5o,loo,55,oo32,
[ I

m

_m

m

).009(_

""T-

).010_ 0.0015(S

/110

We can find the corresponding a for initial values of a 0, e0 from

the relationship

,,. ',eo/ " i 7;

Let us assume that a = 1.5.1013 cm is the distance from the earth

to the sun; 4_r02E0 = 4"10 33 erg/sec; 6 = I; P = 10-3 cm.

/i!2
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TABLE 14

e__ t 0.9
0.8

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.l

0.0

4.42. 102

O. 449

6.31

0.2&5

7.27

O. 172

7.84

0.115

8.17

O. 076

8.34

0.0479

8.43

O.0265 I

8.4_ I

0.0103 I

8.48. 108

0.000

0.985.1

0.591

1.414

O.383

1.683

0.237

1.846

0. ] 696

1.952

0.I068

1.977

o.o59i
1.994

0.0227

2;00. 10'

0.00

N

1.368.10

0.648

2.14

0.432

2.59
0.287

• 2.86

'0.18052.98

O. 100

3.08

O.0385

3.045

0.000

0.6

1.83I. 10_

0.668

2.91

0.444

3.53

0.278

3.82

0.154

3.94

O.0593

3.97

0.000

0.6

2.40 • ]Oa

0.650

3.76

o.417

4.4o

0.2305

4.68

0.0875

4.71

0.000

0.4'

3.27. 101

0.6_

4.65

0.346

0.8
I 0.2

5.32 5.34

0.134 0.212

5.47 5.69

0.000 0.000

5.4]- 1¢

0.383

6.42

0.000

O.l

6:84. 10

o._o0

For these data, we have the following values of K:

e, t 0.9 0.8
t¢ 1.17- 10-3 2.36- 10-4

I l [0.4 0.3 0.2 0.I
8.18. 10-s 2.98- 10-s 8.27.10 -7 2.44 • 10 -T

/112

The first row of each column in Table 14 gives the time

interval t - t O expressed in years, during which the orbit is

changed from e 0 to e. The second row of the same columns presents

the corresponding value of a - i.e., the relationship between
a0

the final and initial semimajor axis.

The problem can be completely solved for any initial value

of (a0, e0) , and for any properties of the moving particle by
means of this Table.
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Let us set, for example,

_=3; p_-I cM; ao=2; eo_-0.5.

It is necessary to find the time required for a particle to

fall into the sun (a = 0). We have

t--to-=4.71.103.3 -1000-2'--5.66.107 years

Similarly, the time required for a decrease in a 0 to 0.4 of

its value will be

t--to=:-:3.8. 103.3 • 1000.22--4.56- l0 T years

It is interesting to note that for the same semimajor axis

the time required for a particle to fall into the sun is much less

for small eccentricities. Particles moving along extended orbits

approach the sun more rapidly.

In the special case of a circular orbit, the radiative de-

celeration can be taken into account in an extremely simple manner.

We already know that the orbit which is initially circular

always remains circular• Therefore, for any moment in time we
have

my t .k2M'm

r r t

M' is the reduced solar mass, i.e.,

ktM'

r

The change in the momentum will be

d Cm:v) Bdt v

As a result of the change, v also changes as well as r

/113

Consequently, we have

from which it follows that

va , =._ k'M---2dr,
2r =

kaM'dr v Bdt

2Fry c .mt7 t '
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dr 2v' •B

dt c mkZM,

or 9

dr 3 r_ l_o .

dt 2 p_c'r
(16)

This means that the rate at which the radius of the circular

orbit is reduced is inversely proportional to the quantity rp6

dr 10" A

dt 6 ;cp_r p_r

Thus, the time T required to fall on the sun from the distance

r 0 is

____p_ro: sec _=pBro'-lO-" years

2,4 .6A

If we assume 6 = i and r 0 is expressed in astronomical units,
then

/114

-_ 6.5.10 _ pro' years

If r 0 = i and p = i0_, then T = 6500 years•

It is interesting to note that the force of solar attraction

does not appear in expression (16).

3. It was assumed above that particles moving in the solar

system are neutral, and are subjected only to the force of

gravity and to light repulsion. In actuality, it can be expected

that they have a certain electric charge, due to the photoeffect

produced by hard quanta emitted by the sun. In such cases, the

over-all magnetic and electric field of the sun will influence them.

However, it must be noted that the problem of the motion of an

electric charge in the solar system does not have the requisite

element of certainty, which is characteristic of problems in

celestial mechanics.

Let us investigate a particle having the cross-section np2

at the distance r from the sun. Light quanta fall on the particle,

including those which can knock out an electron and impart a positive

charge to the particle. On the basis of Einstein's equations, the

energy which is necessary for this will be

e"

P

(for the first electron)

(for the second electron)
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2e t

by, = P- t..... (for the third electron)

he"
h,_k+l==P+--

P
(for the kth electron)

The number of corresponding quanta per one second is

_P_ro2_o _dv

r t

The expression 4_r_E_dv represents the general radiation of

the sun in the frequency interval from _ to v + dv.

It is known that

4=r_ f E_ dv---_4.10" erg/sec.
o

Let us assume that at a certain initial moment the particle

is neutral. The first electron will be ejected from it after

is IS
-- sec; the second electron - w sec. after this; the third
nl n2

is
electron - m sec. after this, etc.

n3

Consequently, the electrization rate will be nl, n2, ....

The value of n decreases as the charge increases.

Along with this, we must investigate the rate at which free

electrons recombine with the particles. Under stationary conditions,

both rates must be identical, and this determines the final particle

charge.

Let us assume that there are N e free electrons per unit of

volume in space; these electrons are characterized by the kinetic

temperature Te, according to the corresponding Maxwell velocity

distribution. Let dN e be the number of electrons per unit of

volume, whose velocities are contained between v and v + dr. The

number of electrons in the solid angle de, which have this velocity

and which encounter a particle in one second, will be

rep2vdNe do
4*t

The total number of electrons is

/i15

/116
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co

)h' == r,p_/ vdiV r
o

According to Maxwell

m_ j

dN, ---=Cv2e, 2,r, itV,

while

Therefore,

N,= C ] v2e _ _r; dr.
o

. J my'

f v,e -_ -2 ar---_d v ge

.n,'----nOZ o ,
co 1 my*

o

We obtain the same expressions for recombination in the case

of charged particles, with the only difference being that the

effective cross-sectlon o of a charged particle is greater than

its actual cross-sectlon, depending on velocity and charge.

Using Sk(V) to designate the effective cross-section with the

charge ke, we can represent the number of electrons falling on a

particle per one second by the similar expression

co ! mW

f _k(O vie 2 kr, an Iv,
t 0

H k = .

. I_my' .v,e 2 kr e dv

o

A stationary state is achieved under the condition:

!_k = IZk' ,

i.e.,

•vk

oo I my s

oo I m _ _

,,,,-.f do
0

The left part of the equation decreases with the charge,

since v k increases. On the other hand, the right part increases,

due to an increase in _k(V). Under stationary conditions, both

/117
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parts must be identical.

Let us determine the effective cross-section of a particle

Ok(V) with the charge ke. Let the electron velocity at a large

distance from the particle be v. From the integral of kinetic

energies

mr' ke'_ke'
• 2 K a

we can find the actual semiaxis of the hyperbolic orbit, namely

2 ke _
a

my I

The angle between the asymptote and the axis of the hyperbola

is connected to the eccentricity e by the relationship

e.-_.-- s_..c or.

The effective radius of the particle is, apparently, the

length of the perpendicular dropped from its center to the

asymptote of the hyperbola. Assuming that the distance of the

perihelion q equals the real particle radius 0, we find

P,a= (a +p) sin
or

[2 ke' --

pef/_ t o___.V.:t_ p). V'(a-J--p)'--ata_[_p

Consequently, the effective cross-section is /I18

Petl_P 1 pmn'] "

Let us now turn to calculating the particle charge ke.

According to Spitzer (Ref. 39), we can assume that the photo-

electric effect occurs for particles of cosmic dust when they are

bombarded by light quanta having a wavelength which is less than

2,000 A. It can be assumed that each such quantum can eject one

electron. We shall examine the case below, in which the ejection

probability for electrons does not exceed 0.001 during this bom-
bardment.

For purposes of definition, let us assume a particle having

the radius p = 10 -3 cm. After substituting numerical data in the

original equation
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we find:

vk = 1.5 ; lOiS-[-,C, •3- 10 *°.

In order to calculate the number of quanta per one second

which ionize the particle

for purposes of simplicity, we shall assume an energy distribution

in the solar spectrum according to the formula of Wien

h,

E0oo _se _r

Introducing the new variable

we find the following for the number of quanta per i second /119

O0

f a2t 7" da

--O'-10_' _k
nk---

rtxT f ase'-ada
o

Taking the fact into account that

we find

OO

l aSe " d_--: 6,
0

n,= o' lO_'.e -='_(_k'+2=k+2),
r' (xT) 6

We shall assume that the effective temperature of the sun is

6000 °, and also that this temperature characterizes the energy

distribution in the remote ultraviolet portion of the solar spectrum.

As far as we can determine, there is no basis for assuming that

there is a significant ultraviolet radiation excess, with the possible

exception of individual regions of the solar disc which are insig-
nificant in size.
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The preceding expression for the distance from the earth to
the sun

r= 1.5. lO*S c_

takes the following form

while

We can now calculate

n, =0.905. I0 *_e-_k (ak'+2_,-t-2),

ak = a'_k = 12--_-k. 2.4.10 -_.
_r

or

i mr_ I

f avs . 2 XTdve

/_kr 0
oo I :_.

l_t • 2 kT dv

0

•Ne

oo

y V_16

/i k, _ 0

! nlvs AI_ __SOo | tlrlv i

2 xT d,/.__jl. __._ f _ t 2 xT d_
p,_,,

_'0- "

I t/'l 'Us

f V ae 2 xT dv

0

Nt'_'pt.

This expression can be readily calculated with the aid of

elementary functions. Taking the fact into account that

0

/120

after various transformations, we can determine the following

for the number of recombinations per one second

_,,=/ I/_ p_ (_)]"

Making numerical substitutions as was indicated above, and
taking the fact into account that

we find

_t =nP_ (1 +4.9-10-' k)_

nh' =425 N, (1 +4.9-10-' k).
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The equation of balance assumes the form

0.905- 101_ e-"k (=k' --[- 2 _k+2)= 425 N ,.( ! +4.9.10 -4 k),

while

=k= 12+2.4-10-44

Assuming that

x=k. 10-5,

we can change the preceding equation to the form

2.23.106 - xo.42:, (3.39 x_+3.67 x+ l) "Ne (I--{-49 x).

The solution of this equation, which can be found by the

trial method, leads to the following approximate values of k

for the different electron density N e

IzZUL_

N, l I 1ok 5.4- 10_ •4.4- 10' ,ooJ• 3.4- I0'

We must remember that it has been assumed that each quantum

having a hardness greater than 2,000 A can eject an electron when

falling on a particle.

If it is assumed that only one electron is ejected per each

thousand quanta, then the positive charge of the particle will be

somewhat less, namely:

. •

Ne
• k

1

2.,5 104 I0 ] 100 [!.6.10_ 0.8.10'

The corresponding charge in volts, calculated according to
the formula

ke' el,"

p 300

is given below:

N,

V (prob. of i).

V (prob. of 10-3).

7.2

3.3

IO

5;9

2.1

4.6

1,1

9'(



It is interesting to note that a charge is obtained of the same

order of magnitude for very great changes in the number of free elec-

trons N e and the probability of the photoeffect. It can be assumed

that Ne equals approximately i in interstellar space. In all proba-

bility, N e is larger in the solar system, but it cannot exceed i00,

since for electron scattering power the brightness of the night sky

will be much greater in this case and will be independent of the

eclfptical latitude - which is not observed in actuality. It can

therefore be assumed that the possible positive charge does not

exceed 2-3 volts even for the largest meteoric particles. These

data pertain to the distance from the sun for one astronomical unit.

As can be seen from the table, the charge must be of the same order

of magnitude at other distances. For such a charge, the particle

motion must be determined almost exclusively by the force of gravity

and by normal light repulsion. Nothing definite is known about the

presence of an external magnetic field of the sun, and there is some

doubt as to whether it even exists at all. On the other hand, in

order that the effect of an electric force on a particle can be com-

pared with the force of gravity, it is necessary that the charge of

the sun be on the order of 1015 volts, which is also completely im-

probable. Thus, all conclusions regarding the motion of a particle

in interplanetary space remain in force.
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4. An investigation was made above on the time required for a

meteoric particle to fall into the sun or, more precisely, for the

semimaJor axis of the orbit to decrease to zero. We should note that

during the flight to the sun an actual decrease in the amount of

angular momentum connected with the particle cannot take place. We

have seen that, no matter what the nature of the initial orbit for

the meteoric particle, it approaches the sun along a circular spiral,

when the particle - performing several consecutive revolutions - only

very slowly decreases its distance to the sun. Thus, the particle is

gradually heated, and it begins to decrease its size at a certain
distance. This leads to the fact that the reduced mass of the sun

also decreases more and more rapidly, and finally reaches zero. How- /123

ever, it can be shown - as was done by Jeans (Ref. 40) - that at each

given moment the product of the semimaJor axis for the osculating

orbit of the particle by the reduced mass of the sun remains constant,

i.e.,

aM' = const.

The semimajor axis increases as M' decreases. This very quickly

balances the approach to the sun as a result of radiative deceleration,

and then leads to a more or less rapid departure of the particle.

Thus, the fall can actually take place only in the case of a cold sun,
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but in this case the sun would not be in a position to evidence

radial repulsion.

We should point out that the reduced mass of the sun

decreases significantly only when the particles are very small

in size, on the order of several microns. Therefore, as it

begins to decrease, the particle actually volatilizes and - as

it is repulsed from the sun - it changes into a cloud of ionized

gases which rapidly dissipates into space.

Since it is very probable that this process takes place

quite rapidly, in spite of the very slow approach to the sun,

there is no necessity of investigating the evolution of the

particle's orbit at this stage of its existence.

5. Significant importance can only be attributed to the

fact that meteoric particles, changing into ionized gases, must

enrich interplanetary space with free electrons which have

considerable scattering ability. It can actually be shown that

even hydrogen atoms, which have a significant ionization poten-

tial, must lose their electrons throughout all of space in the

solar system.

Let us examine the basic ionization equation for inter-

stellar space (Ref. 41):

J

N t N Ut', N e represents the amount of neutral atoms in the basic

state, and ions and electrons per unit of volume; q', q" - statis-

tical weights of the basic state of an atom and an ion; T, Tef f -

effective temperature of adjacent stars and kinetic temperature

of free electrons; J - ionization potential; _ - optical thickness

at the distance S from the star, at which the state of the given

gas is investigated; W - radiation dilution factor, namely

R |
W--

St "

R designates the radius of the star, while it is assumed that

e<<s.

We can assume that

N__N'.--}SN"; N'=xN;'N'._-_(1--x) N.

In the presence of only first order ionization, the number
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of electrons must equal the number of ions, and therefore we have

•N+----xN
.

Substituting these expressions in the preceding formula and

inserting the values of certain constants, we find

while

x, N___C,.t .e_,,1 --x

c,=,o-+-+"-+,2f

where 0 5040'
T

Within the limits of the solar system, it can be naturally

assumed that

In the case of hydrogen atoms in the solar system (R = I,

x = 13.56 volts, T = Tef f = 6000 °) we have

N.¢"S' -----6_'12" 10-'.
l--x

For the degree of hydrogen ionization x = 0.5 and 0.9, we
obtain

x = 0.5 x = 0.9

N ffii S = 2300 astr. unit S = 560 astr. unit

I0 740 179

I00 230 56

i000 74 18

As was pointed out above, for N = i000 the entire brightness

of the night sky can only be caused by electron scattering.

Actually, if we take the general expression (Ref. 42) for the

brightness of an electron cloud

OO ¸ ,

o

(L - amount of light emitted by the sun per unit of solid angle,

i.e., per one steradian; _f(O) - scattering ability in the

direction O between incident and scattered rays, calculated for

one electron) and if we take the fact into account that in units
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of the terrestrial orbit radius

then we will find that

Since

R= si"(%t-'0 ,
sin

_--1

J---_tL sin

•f (9) = 1+cos' 

and in accordance with the density change in the medium ot the

zodiacal light

lV= ,
r

we find the following for the ecliptic plane

The brightness of the sky, expressed in the number of stars

of the fifth magnitude per square degree, is

= "

The brightness of the sun in the same units, observed from

the earth, is

JO = 2.512 s'-s.

Cons equen tly,

• P" _.51_31 5
j ..... sh,_. , "k_o}'k-3_-c°sl_-c°sSlj NO'

while

Thus

e W

_= -- = _-0.4- I0-",
2 mSC I

j=0.18.102.4 sintNa{ (___¢oslAvcosSl) "

For Z = 90* we have approximately j = I. Thus

No = 4.102.4 _ 1000,

in accordance with the statements given above. Thus, the actual

number of free electrons in interplanetary space per cubic centi-

meter must be comparatively small, in all probability on the order

of not more than several tens. This means that all the gases

must occur in an ionized state.
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If it is assumedthat the output of meteoric matter and its
conversion into a gaseous state close to the sun is approximately
1018 gramseach one hundred thousand years, then the amount of
free electrons would have to be quite significant throughout the
lifetime of the solar system. In actuality, the liberated
electrons remain in the vicinity of the sun and increase the bright-
ness of the outer corona. In order that this increase remain
within reason, it is necessary that in the previous epochs during
the lifetime of the solar system the density of matter in the
zodiacal light would have to be of the sameorder of magnitude as
it is at the present time.
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CHAPTER8

Density Determination in the Medium of Interplanetary

Meteoric Matter on the Basis of Stationary Conditions

The motion of an individual meteoric dust particle under the

influence of solar attraction and light repulsion was investigated

above. It was shown that the dimensions of the orbit gradually

decrease, as a result of which each dust particle finally falls

into the sun. However, it is quite probable that the total

complex of meteoric matter remains in a stationary state, being

continually replenished by one or another mechanism. Independently

of the manner in which this replenishment by meteoric matter

takes place, it can be shown that the stationary condition alone

can determine the density distribution at different distances from
the sun.

Let us first assume that meteoric particles move along
circular orbits. It was shown above that these orbits retain

their circular form, that their dimensions will gradually decrease.

Let us postulate the condition that the same amount of matter is

always found per unit of volume in space at the distance from the
sun r.

dr

Let us use _ to designate the rate at which the radius

vector of the circular orbit decreases. Apparently, the volume
dr

_r 2 _ of matter approaching the sun penetrates per unit of time.

If we use f(r) to designate the density of matter in space, the
amount of matter in this volume will be

dr
f (Oi

The stationary condition has the form

J128
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Since

_r 2 dr f (r)= const.
dr"

dr
--= Ar-- ! p-!
dt

where A is a certain constant, the density function f(r) can be

expressed as

C
f(r) = --.

r

Thus, when particles perform circular motion, the density of
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matter in the over-all dust complex, which exists under stationary

conditions, must change as r-I.

Let us examine the more general case of elliptical motion.

Let the initial values of the elliptical elements be a0, e 0, while

at the moment t we have

=(±T,.,-eo'
ao \ eo/ l -- e'

Thus, at each given moment the magnitude of the eccentricity

can be regarded as the function of the semimajor axis and of the
initial values for the elements. On the other hand,

da

dt mea2B<l_[.___)(l_e2)_.t °

where

S

B =_°" r_Eo
c

with the notation presented abOVe.

Let us investigate a volume of space at the distance r from

the sun. All orbits which satisfy the condition

a(1 --- e)_r_a (1+_

can penetrate this volume.

Consequently, the group of orbits (a, e), which is uniformly

distributed around the sun, forms the field a(l - e) - a(l + e),

which includes the value of the radius vector r.

The density of matter in this zone is proportional to the

following factors (see the chapter "Integral Effect of the Decay

of Periodic Comets") :

sin _ 1)
r sin 2m '

where _ is the angle between the radius vector and the tangent to

the orbit at a given point,

r sin _ 2)

V a (1- e')'
l

-7" 3)

The first factor characterizes the quantity which is the inverse

of the distance between contiguous orbits; the second - the density
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of particles at a given section of the orbit; the third - the

degree to which the orbital planes converge.

Thus, the spatial density D, determined by the group of

orbits (a, e), is proportional to

O----_ _g_

If the condition is introduced that the amount of matter

distributed along the orbit does not depend on its dimensions,

we then find that

k-- C
a818 •

ThUS, we have /131

We should note that

D=C tg
ra "1' 1/a (l -_ e')

tg_ =/ ap2 ar -- rz -- ap

where p is the parameter of the orbit.

It was indicated above that the total density in a given

volume is determined by all the orbits, beginning with those

for which

a I (1 -_-e,) = r,

up to those for which

a2(1 --e.,) =r.

Let Pada be the probability for the distribution of the

orbits ranging from a to a + da. The desired density of matter
will be

a,

A= I_._ Pada ]/'a-P
" r a't" V'-p lf2 ar -- r" -- ap

ai

or a, !

A- 1 [ P= a_____L_(2 ar -- r "_-- ap) -_-_ .
--rd a

_*

Let us now introduce the stationary condition. If the group
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(a, e) is continuously formed from the group (aO, eo), then under
stationary conditions at each interval da the number of orbits

da
must be inversely proportional to _.

Consequently, we have
aa

A : da
a _-V _2ar_r 2-ap

It can be readily established that in the case of a circular

orbit this expression is simply proportional to r-1, as we pointed

out above. Let us now assume that e is a small quantity, so that

e 2 can be disregarded in comparison with I.

In this case

In addition,
da

a _ = const.
dt

Taking the fact into account that

r=a (1 --e_) (1 -- e cos v)-- ' =a -- ae cos v,

we find

and

I/zar -- r"- -- ap : ae.sin ,o

( ....da : re sin vdv 1 -_ 4 a

Therefore, we have

or after integration

II

A= 1 _[resin-va--v (1-[- £ .-3e cosy)
r | ae sin v a 4

. ' c.= t" a--Lv-1- _- e cos vdv --a a

o o

Let us now turn to the general expression
as

A := __If da

Or da
a .-- V2"ar -- ,._ -- ap

", dt

and let us try to retain small quantities of the second order with

j132
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respect to e2.

Wehave
da

a--=--K
dt (, "

or, expanding in series,

da

a -- = -- K (1 + 2 e').
dt

In a similar way, we obtain

and

V_2ar-r"-aP - ae sin v ( 1 - e c°s'°'- I- ez -j- et c°s2v)2

| e _ cos t it,,)X (1 _- 2 e _')(l-- e cosy -- 2 e*-[-

or, after the necessary transformatlons,

resinvdv-_--da[l--eZ--(2ae-_rcosv){_].

The expression for & can be transformed into the form

A r[ _ r do

de

.x i dv l+_ecosv--- cos*vr 16 "
0

After integration we obtain:

)A C (l___e 2r

Since the mean eccentricity a decreases with a decrease in the

orbital dimensions, the desired density A increases somewhat more

rapidly than r-I.

Utilizing the approximate relationship

we finally find

e

()",]a __ C[I__ 8-e_ r'_; ]
A= 1-- e°2 ao rE a2 o ao,, j'
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It can be assumedthat a0 corresponds to the distance of the
asteroid ring, i.e., it approximately equals 3 - 4 astronomical
units.

Whencomparedwith the observed density distribution in the
mediumof zodiacal light, the value of r must usually be taken
as less than unity. The meanvalue is _ _ 0.2.

a0

The formula presented above shows that the additional term
which it contains does not exceed 1%for all values of e0 up
to 0.4.

that
Thus, in this case it can be assumedwith sufficient accuracy

If the brightness actually changesmore sharply, then this can
serve as an indication that there is a significant amount of
orbits with large eccentricities.
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CHAPTER 9

Theoretical Determination of Spatial Density of

Meteoric Matter in Interplanetary Space

The different mechanisms leading to the accumulation of meteoric /135

matter in interplanetary space were studied in the previous section.

It was found that in every case without exception - whether it were

disintegration of periodic comets captured by planets as a result of

large perturbations, liberation of cosmic dust from the surface of

asteroids at a rate which permitted accumulation in the vicinity of

the sun, or, finally, meteors falling into the sun as a result of

radiative deceleration - the density in the plane of the ecliptic

changed in a manner which was inversely proportional to distance in

the region which could be observed. It is quite probable that a similar

conclusion would be reached by studying the action of other possible

mechanisms which could lead to interplanetary space being occupied by

matter from the outside. However, it is necessary to postulate a cer-

tain hypothesis as to the origin of meteoric matter in order to deter-

mine the density at any point in space outside of the ecliptic.

The integral effect of the decay of periodic comets cannot be

large, since large perturbations are only slightly probable and can

clearly not provide an adequate output of meteoric matter. In addition,

as was shown above, during such a mechanism this matter would have to be

concentrated close to the plane of the ecliptic, and more probably

close to the general plane of planetary motion.

The continuous accumulation in space of dust which has been /136

liberated from the surface of asteroids is incomparably effective.

The presence of radiative deceleration makes it possible to start with

the assumption of considerable ejection velocities.

No matter how small the relative velocity at which dust is ejected

from the surface of an asteroid, even when they are rather small the

dust particles rapidly fill up the inner regions of the solar system,

while under stationary conditions their density must change according

to the law r-1 in any plane.

The dispersion of meteoric dust on both sides of the ecliptic will,

apparently, depend on the distribution of asteroids with respect to the

angle of inclination.

Let us try to determine the function of meteoric dust density in
the form

where _ is the heliocentric latitude of the object under considera-

tion in space. Let us derive f(_) on the basis of the distribution
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function of the asteroid orbits with respect to the angle of inclina-
tion F(i).

Since radiative deceleration does not change the position of the
orbital plane, it can be assumedthat meteoric dust, which is libera-
ted ata very small relative velocity, can be characterized by the
samedistribution F(i).

Let us assumethat the observer is located in the center of
the sun. The density of matter at the angle 9 above the ecliptic
is determined by the numberof particles included in the interval
9 and _ + dg. The particles moving along an orbit which is inclined
toward the ecliptic at the angle i , in such a way that i _ 9, are
located in this interval during the time dt, which is proportional
to the orbit section dt contained between the given limits, for the
sameperiod of rotation T,

l = 2-!t; dl ,_ dt.
T

If we use _ to designate the angle between the orbit and the

latitudinal circle, we have

d? : .: dl cos or.

On the other hand,

Thus

tgq_=tg/cos o_.

d? tg,_
t- r •
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Since the area of the zone d9 is 2_ cos 9d9, we find that the

density of matter distribution is proportional to

f (_) P(O aeat
2 _ cos ? d? "

Taking the fact into account that

and

sin ? = sin l sin i

tg I =
sin ?

/sin _ l --sin __ '

we find

f(v) -- F (0 ai

J/sin _ i-- sin_ "

For all possible angles of inclination i , we have
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2

f (_) = Vsin 2 i -- sill' _"

In the special case of uniform distribution of the orbit_ f($)

does not depend on 9. Actually, the orbital zone must uniformly

occupy the surface of the celestial sphere, and therefore

We have

F (i) di = C sin idi.

2

I sin idif (¢_) '-" gsin' 1-- sin'_
(17)

Assuming that

in this case we find

cos i

¢os_p_
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as was indicated above.

i

S d x __ = ___ const,f (_) = V" 1 -- x'
o

In order to calculate the integral (17), in the general

case it is necessary to determine the analytical expression for

the distribution function F(1). The number of asteroids, whose

orbital inclination is included in different intervals of the

angle i according to data from the Klelne Planeten in 1920, is

as follows :

, ] o*--s. Is.-,6. ,6.'24ol 24.-_. I :n....

N I 372 I 333 I 83 ] 18 1 3

The most comprehensive list at the present time, which con-

tains the orbital elements of 1549 asteroids, is given by the

Copernicus Institut, Kleine Planeten, 1943.

The calculations which I performed provide the following

distribution with respect to inclination:

, [w_s. o.1
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It is natural to represent this distribution as the product
of sin i by a certain exponential function which rapidly decreases
with i.

A representational attempt using expression

/=(i) = sin ie -ki'

did not lead to this result. Thus, the orbital distribution of

asteroids with respect to the angle of inclination does not follow

the law of random errors. On the other hand, the simpler expression

F (i) = sin ie- _t

corresponds to observations very closely. Thus, for example, ex-

pressing i in degrees, for k = 0.20 we have the following:

10o olo010oso++++ 
 ,0c-lcolate ,6 151,132,I0117 133141
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The data from this table are shown x,, Figure 6. As can be

seen, the agreement reached is satisfactory.

F'(j

fi

5

4

3

t

// s _ t5 ,eo e5 30 3_ _o

Figure 6.

Distribution of Number of Asteroids with

Respect to Their Orbital Angle of Inclina-

tion.

Let us now calculate f(#). In tn_ case of small angles of _,

the following approxlmatlve computational method can be assumed.

Let us set

i_-?-_¢.

1140
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The expression which is proportional to the density

2

'" sin ie- ki dl

f(?) = 3 l/sin2i--sin_?
tp

can De written in the form

f ($) --_ e- h__"
o

sin (_ + ¢) e-- k'az

l/sin _ (q_-]- _) --sin'

or, taking the fact into account that

sin 2 i-- sin_9 --_ sin (i--9) sin (i-{-?) :- sin e sin (2 cp-_- ¢)

and assuming that

we find

f =
'(:--')e__ka , f sin 9+ e-Xdx

• k o") ],/sin, sin (2 _ -1- ¢)

If 9 is expressed in radlans, as is necessary, then

k = 0.20. ]8o : l l.a

is a very large quantity. Due to this fact, the integral is de-

termined in essence by only small values of the angles e.

For example, the angle e, which corresponds to

equals

e --_ : 0.01,

4.6
¢ : _ : 23 °.

0.2

The angles e, which exceed this valu% do not in fact have any

effect on the magnitude of the integral.

If e-x = 0.i, then x = 2.3 and e = 11.5 ° .

Due to this fact, all sines under the integral sign can be re-

placed by the angles for small values of 9- We have approximately

in this case
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e- k_ _ (_ + ¢) e- x dx
f (_)= ----F- g(2_ + 0 ;

o

1427¢4 ¢2k
o

e- x d_

from which it follows that

Since

2 _¢ 4 6'

represents a small quantity even for e _ 39, it

simplify the integral to a greater extent and to

the following form

is possible to

represent it in

In order

e- kq, 1+ ?'
f(_)-- _ 2_+_," e-_dx+

_(-_-_) ]+ f e-J'dx "
3 k:_

to avoid the pole of the integrand, we can write /142

The value of n

IS/ +f (_) = e- k_ _* e- _'dx +

3k_ ]-Jc 1-[- 27. + , ,

n

can be determined so that

or so that

kz _t
>>1
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If, for example,
!

then, taking the fact into account that the first integral equals

2V2_?_,

we obtain the following approximate expression, which is convenient

for numerical calculations

f(?)__,e--k_[ k_ +e_3k _ k! V k'¢k L1/i-6- + 1-_ 2k,_x+x'-" e-"dx ,

We should note that for _ = 0

For greater values of _, f(_) can be calculated according to the

initial formula

k

sin-_sin 2%_+ k-

Dividing this integral into two parts

/143

and assuming that

f =f+f
0 0 x,

X 1 = /_

is small as compared with k_, we shall have approximately

0

*(¢-')
-t-_ sin ?+ e--Xdx
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or

f (,p)= f (o)e- k_[_i. _,__£Vk-_.+

]/'sin 2 V

'(_--'o) sin (g-_. :-)eZdx 1

If, for example, we set

x == 0.1,

then the corresponding angle is 0°.5 in all.

Calculations based on this formula lead to the following results:

the function f(_) can be represented by the simple expression

f (_) = f (o) e- k,,,_,

where k = 0.20, R and f(¢) are given below:

0-

/(_,) ......... j.ooc

e ........... 1.ooc

4" 8" 12"

0.5_I 0.294 0.154

1.211 1.455 1.689

I
16" $0" I 24"

!

• I

0.081 0.0111 0.020

].987 2.25 I 2.,52
!

These numbers are represented graphically in Figure 7.

As can be seen, R is a quantity which increases monotonically

with _.

/144

to

O5

g
4" 8" 12" 18" ,72*

Figure 7.

Function f(_).

According to several considerations, f(_) must be represented
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in the form

[(_)---[ (0)e-k,,,.,.,

where k I is a constant quantity which can be found empirically.

Let us assume that for all possible $ we have /145

We find that

e- k. ,ia, _ Ke _ x_,.

k, = k_, Ig K l
sin T Ige sin T

The values of k I are actually sufxiciently constant, as can

be seen from the following:

° • ° ° °

k I .....

Let us assume that k I = 9 on the average.

The new expression for f(_) represents the calculated values

as follows:

? ........ 0 °f (_) 100
e -gsi"_ ..... I. O0

I
O.544 0.294 i

. O. 0461O. 154[ O.084[

Thus, we can finally assume that the density function D(r, _)

of meteoric matter which is formed from an asteroidal ring at a

negligible initial velocity has the form:

D_ig)=O° e -o,ln_
T

This density distribution is similar to the structure of the

atmosphere in hydrostatic equilibrium.

Let us use r, z to designate the distance of the given volume

from the sun and the extent to which it surpasses the ecliptic plane,
so that

z------r Sill T-
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For given r, the density of matter changes according to the
law

e- zl%

r

where z 0 = _ plays the role of the altitude of a uniform atmosphere.

At the distance from the earth to the sun, this altitude is approxi-

mately 17 million kilometers.

It should be noted that the parameter kl, which characterizes

the hypothetical density distribution in a medium of meteoric

matter, is derived under the assumption that the list of asteroidal

orbits which are known up to the present encompasses all existing

asteroids up to the very smallest ones. The latter are of predomi-

nant importance, due to their significant total surface.

However, the possibility is not excluded that the smallest

asteroid, which cannot be directly observed, can move along orbits

which are more inclined toward the plane of the ecliptic. It is

also very probable that dust is liberated at a significant initial

velocity, and has an arbitrary orientation with respect to the

generating asteroid. This must also lead to the dust being distri-

buted in a wider region of space with respect to the ecliptic.

If we know the function which represents the density of

matter in interplanetary space, we can derive the theoretical

isophotes for the brightness of zodiacal light.

Let the sun be located at S; the earth - at E; and the

object under consideration - at P in space.

Let us use the notation PS = r; EP = A; ES = R.

Let 8 be the geocentric latitude of P; _ - its heliocentric

latitude. Apparently, we have

r sin_- :A sin [_.

If L is the illumination from the sun at the distance R, then

the amount of light scattered by the volume dv, which is located at

the point P, per unit of solid angle toward the observer will be

where _ is the scattering indicatrix.

It thus follows that the brightness of the volume dv observed

at the angle d_, will be

/146
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R 2 dv
I_L-- _ D.

r' Ae d_

Because

dv: AzdA do,

for the total brightness of all dust-like matter in a given

direction we have

The nature of the scattering indicatrix P for meteoric

matter, which is represented by particles which are large as

compared with the length of a light wave, merits a special dis-

cussion. Assuming that P = const, which must be very nearly

the case, and discarding the remaining constant factors, we can

represent the observed brightness in the form of the integral

J:f DdA7"

Introducing the expression which was determined

we find

D= e- kt sln
--?

r

j== I e--k_sin_ dA
r _

or because

where l,
o

r _ := _V'..l-R" -- 2 RA cos 13cos (1 -- l®),

are the geocentric longitudes of P and S

I --k,Asin[3

e r d-_

J =_- r$

R _.. k,sln _ (R cos y L_ |/r .__ R3 sineT)dr

[i e 7J_=
Rsinv r'- 1/'r _- R z sin' T

Oo ""

._ e
r*'l / r" -- R" sin '_7

R sin -,,

÷
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while

cos v ==cos a cos (t-- le).

The angle y represents the angular distance of the element P
from the sun.

If 8 = O, and consequently y = Z - Z , we have
®

R

j : dr __ ----:R'

R v r_- I -- r_Sin-" 7 R • r_ 1 -- _-sint 7

from which it follows that, after integration, we have

j= I °
Y

1-- cos T

as was found above.

In order to calculate the general integral (17) by a numerical

method, we can start with the initial expression

!

e r ' d'_J
U
o r q

whlle

r'= l _-A' -- 2 A cos [3cos (l -- l®).

It is assumed that the distance between the earth and the sun

is unity. Calculations based on the trapezoid method, which were

carried out over the interval A which equals 0.2, yielded the

following results:

kl =9.
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TABLE 15

sin 13 Y t-t 0 J

0.00

0.'00
0.05
0.]0
0.20
0.00
0.05
0.10
0.20

0_
20_
20 °
0

2.9
5.8

2.9
-5.8

tl.5

60*
60
3O
60
6O
6O
60
20
30

30
30

60_
7_3

23
6O
6O
59.8
59.3
30
29.8
29.5
28.0
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1.97
0.36_
0.42_'
1.97
1.43
I.Og
0.{_$
7.45
3.9!
2.24
0.94



These numbers make it possible to form an idea of the

general nature of isophotes.

These isophotes follow the planes of the ecliptic comparatively

closely, but expand in a definite manner as they approach the sun -

as is observed in actuality. Thus, the general properties of the

phenomenon representing a complex of meteoric dust resulting from

the disintegration of asteroids definitely correspond to reality.

It should be noted that, on the basis of the same table, it is

possible to obtain isophotes which are much more extended, if only

the constant k I is decreased correspondingly.

Figure 8 illustrates such isophotes, calculated in the same

way for k I = 9 . As can be seen, these isophotes closely repre-
3.4

sent the actual form of zodiacal light. Thus, the entire complex

of meteoric dust, which produces the phenomenon of zodiacal light,

is incomparably more widespread in interplanetary space along both

sides of the ecliptic plane than would be the case if it were only
the result of radiative deceleration.

/15____q_o
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Figure 8.

Theoretical Isophotes of Zodiacal

Light.
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CHAPTERI0

The Exchange Rate of Zodiacal Light
Matter

In the preceding section, it was shown that zodiacal light is

a product of the gradual disintegration of asteroids as they collide

with meteors. The dust-like matter which is thus obtained as the

result of radiative deceleration occupies interplanetary space and,

scattering the solar light, it produces observable light phenomena.

However, it is necessary to show that the assumed mechanism can

produce the requisite output of matter in order that the zodiacal

light can remain in a stationary state for an indefinitely long

period of time, in spite of dust particles continuously falling into

the sun.

Let us focus our primary attention on the problem of the

distribution of meteors by size. The only way to formulate an

opinion on this subject is to analyze the number of meteors

having different apparent magnitudes which are observed when they

penetrate the terrestrial atmosphere.

Unfortunately, different determinations lead to greatly

diverging results.

There is no doubt that the number of meteors rapidly increases

as their brightness decreases, and this increase is approximately

the same for all stellar magnitudes.

According to Williams (Ref. 43), the increase in the number

of meteors is k ffi2.08 ± 0.I0 for each stellar magnitude. The most

recent work by the same author gives k ffi2.29 ± 0.16, which repre-

sents observations as follows:
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mg

Observed

Calculated

mg

Observed

Calculated

1.0 3.0 3.5

1 . Io0.60. !.2 1.7

4.0 4.5

10

5.2

9.0

79L7.6 10.9

9.5
6.0 I 6.5 7.0

21 123 51

22.7t32.7 _,7.2

0 !

2.5 3.6

7.5 8.0 8.5

_71 I 1051 781

68.0198.31 142I
2:

20J

"1

296 I
• i

20

15.7
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A great deal more information is necessary before a definitive
opinion can be formed regarding the increase in the number of

meteors. Watson (_ef. 44) studied a series of telescoplc observa-

tions by Butroyd as well as the observations by Opik using the

naked eye (Ref. 45, 46), and found k = 4.

Observations by Hoffmeister using the naked eye (Ref. 47) and

a series of telescopic observations by 0pfk, which were processed

by Watson, showed further that k is less than 4, and probably does

not exceed 3.

On the basis of this information, it can be assumed that k = 2.5,

i.e., the number of meteors increases with each successive magnitude

proportionally to a decrease in their brightness, and consequently

in their mass. It can thus be approximately assumed that the total

mass of all meteors within the limits of each stellar magnitude

interval is one and the same. This mass is assumed to equal 11.5

kilograms (Watson). As was shown above (see the Introduction),

this law leads to a distribution of meteors by size in the following

form

f(p)=cp-'.

Because this distribution is characteristic for meteors, it

can be assumed that it holds for all of interplanetary space.

However, dust-like matter which is liberated from the surface of

asteroids has a distribution which is initially different, in which

smaller particles predominate. Actually, in the simplest case

of circular motion, particles having the radius p approach the sun
dr

per unit of time along the segment _ under the influence of
radiative deceleration.

If f0(P)dp is the initial number of particles per unit of

volume, then under stable, stationary conditions the spatial

density will be proportional to
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Because

fo (V_d_....__p
dr =f(P)"
dt

we have

or

f, (P),--..f (P),0-'

fo (p)....

Let us now determine the mass of zodiacal light falling into

123



the sun during the established time t. The radial velocity of an
individual particle having the radius p, at which it approaches

the sun, is

A
i_ w.B

dt rp

Performing integration within the limits from r to 0, we find

It must be noted that during the given time t all the particles 1154

having the radius p, which are included within a sphere having the

radius r, fall into the sun, so that

r _---_ t.

Let us use F(p)dp to designate the number of particles per

unit of volume in the ecliptic plane and at the distance of the

earth from the sun. At any point in space having the coordinates

with respect to the sun (r, 9), we have

F (p) dp e-- k, sln

r
. .

Using 6 to designate the particle density, we have the

following for the corresponding mass

4 F(p) dp e- k, s_n,

r

Throughout the entire sphere having the radius r, the total
mass of matter is

where

4 _8 _F (p) d,o dr,
3 •

dv _---2 _r _ cos _ d9 dr.

Performing integration, we find

4 =, p3 af (,o)dp _(1 -- e- k,) r'.aM=X

It is interesting to note that in the case of spherical distri-
bution of matter
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dM o_-__=,, p3 IF (p) dp .r'

so that the. ratio between the mass in the actual configuration

of zodiacal light and the mass of a spherical configuration is

dM = i - e-kt

dMo kz

Because

k _ 3 -- 2.5;

I _ e- _, _ 0.3,
k,

which does not change the order of magnitude.

The total mass for all sizes of particles, falling into the

sun during the time t, is

O0

M' = _43='_ k,i (1 -- e-- k_) 2 At I P' F (p) dp.
Po

As was indicated above, assuming that

1155

we find

e O)=Co-L

M'.= _=' _ !(1 -- e- k,) 2AtC---.,
3 kI Po

where PO is the lower limit for the particle radius.

On the other hand, the density of matter in zodiacal light,

including all sizes of particles from O0 to Of, is represented by

the expression

4 e --k, sin _ _t sin
D=_x_C _ _ dp-- 4._Ce=_' . (lnp_--lnpo).p 3 r

Integrating this expression over the volume of a sphere

having the radius r, we find the quantity of mass M 0 contained in
it

4 _s_2 C 1 (1--e -k'
Mo = _ kt ) (In Pt -- In eo).

Consequently, the portion of the mass falling into the sun

during the time t equals

M' ___ 2Atpp _!

Ma re* (In Pt _ In O_
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dr
In order to determine A, we can find the expression for _.

c

In the case of circular motion

k 2 Ms_

,V2__. • /_ )
r

where M' is the reduced mass of the sun
®

3 ro _Eo ._A4'®':M®, 1. 4 _k' M_/

(k2 is the gravitation constant; 4_r02E0 is the total radiation of

the sun per unit of time)•

For the values of p under consideration, the magnitude of

M' barely differs from M .
® ®

The tangential component of the light pressure impulse per

particle at the distance r is

_p2E o r_o

ell

dv
and changes the momentum m-_, so that

dv "t_P'_o ros
Ill _ =

dr- cr I

V
where 7 fit is the aberration constant.

Finding the connection between dv and dr, we finally obtain
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It thus follows that

dr = ! eo "o____!_
dt 2 c2_r p

A-- 3 E° r_2
2 c'8

and therefore

M,= .... 3 o,Po-'
Mo c'_(lnpx--lnpo) .

Introducing the following numerical values in this formula:

4wr02E0 = 4.1033 erg/sec; c = 3"1010 cm/sec; Pl = icm; P0 = 10-3cm,

we find:

M_i' = z_[ 10_st,

if the time is expressed in years•
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Thus, in i00,000 years approximately the entire mass of zodia-

cal light, included in a sphere having the radius of one astronomical

unit, falls into the sun.

This comprises a mass of approximately 1018grams, which is

equivalent to an asteroid having a diameter of 10km. Such an

asteroid is fairly representative of this type of small bodies.

Such is the output of zodiacal matter. What can its input

be? It can be expected that a large amount of dust-like matter

will enter into interplanetary space as a result of asteroids

being bombarded by meteors. The number of meteors entering the

earth's atmosphere each day was calculated as 2"107 at the beginning

of the 20th century (Ref. 48). According to Williams, a stream of

meteors which is brighter than the 6th magnitude comprises 7.3-107

per day for the entire earth, and according to Watson even comprises

1.3-108 for the same magnitude interval. This corresponds to meteors

whose mass exceeds 0.002 grams.

in one year this amount is 5-1010 , and in 105 years it is 5-1015

meteors.

It was shown above that the surface of asteroids must exceed

the earth's surface by several orders of magnitude. For the same

density of meteoric matter in space, the number of impacts on the

surface of asteroids comprises 1019 - 1020 on the whole.

Consequently, each impact must yield 0.i - 0.01 grams of

matter, which is fully possible.

Thus, it is possible that each i00,000 years a mass equaling

the mass of an asteroid, having a diameter of I0 km, falls into

the sun. Throughout the lifetime of the solar system, this would

be 103 - 104 times greater, i.e., a large portion of the matter

in the present-day ring of asteroids.
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CHAPTERii

Zodiacal Light According to Visual Observations

and Considerations on Its Photometric Study

The theoretical conclusions presented in the preceding chap- /158

ters must be compared with observations. There have been an enor-

mous amount of observations on zodiacal light, but in the over-

whelming majority of cases, these observations were simply performed

by the naked eye. The observations of Heis, Weber (Ref. 49), Jones

(Ref. 50), and others which extended over several years are well-

known. These observations primarily consisted of sketches of the

position of the "outer shape" of this phenomenon and the alignment of

its axis with respect to the ecliptic plane. Such observations lead

to incorrect concepts regarding the outer form, and even regarding

the position of zodiacal light. At our latitudes, zodiacal light

appears in the form of cones - evening or morning - which are greatly

inclined toward the horizon. Due to the fact that its lower portions

are attenuated to a greater extent by atmospheric absorption, the

lines of maximum intensity are shifted upwards and close to the horizon

by several degrees. As a result, a purely fictitious inclination of

the zodiacal light toward the ecliptic is produced (Ref. 51), and in

addition the entire pehnomenon is displaced toward the north of the

ecliptic in the Northern Hemisphere - and toward the south, in the

Southern Hemisphere. Because these characteristics are intensified

as the inclination of the zodiacal light toward the horizon increases,

and because this inclination increases with latitude, it is usually

stated that the zodiacal light moves increasingly away from the eclip-
tic in the same direction in which the observer moves. Some researchers /159

(Ref. 52) have even concluded that the displacement of the zodiacal

1 1
light from the ecliptic comprises approximately 15 20 the latitudin-

al displacement of the observer. I developed a method (Ref. 53) for

determining the effect of atmospheric absorption on the position of

the zodiacal light axis, and used it to evaluate the numerous observa-

tions of Heis and Weber from 1847 to 1875. The corresponding correc-

tion was quite large. The magnitude of the correction, which changed

with the time of year, could amount to 4 ° close to the horizon for

particularly unfavorable circumstances, and rapidly decreased with
altitude..

Plotting all of the observed positions of the zodiacal light

axis on a graph and comparing them for the effect of atmospheric

absorption, I found the following elements using the method of

least squares: inclination toward the ecliptic, 0.2°; distance
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from the ecliptic to the north 1.0 °. Thus, according to the visual

observations of Heis and Weber, which were performed in Aachen and

M'dnster and which were corrected by my method, the zodiacal light

is located parallel to the ecliptic at a distance of I ° to the

north. In addition, an analysis of the same observations showed

that the elements of the zodiacal light axis change somewhat with

time. It can be concluded from the individual series of observa-

tions performed by Heis that the axis of the zodiacal light is

sometimes located to the south of the ecliptic. Its inclination

fluctuates within narrow limits, but on the average this fluctuation

is very negligible. If the indicated correction is not taken into

account, then the inclination of the zodiacal light toward the

ecliptic is quite significant. Thus, for example, the same ob-

servations of Heis on evening zodiacal light yielded an inclina-

tion of about 7° . Marchand (Ref. 54) obtained the same inclina-

tion of 6 - 7 ° from his observations at the Pic du Midi. Bayldon

(Ref. 55) found i = 4°; Backhouse (Ref. 56) found i = 3°.

At the present time, purely visual observations are performed

more or less systematically by numerous astronomy lovers. Since

1937 an observatory has been in operation in Japan, at Ceto (Ref.

57), which is specially designed for such observations. Elvey

(Ref. 58) attempted to process material from this observatory,

introducing a correction for a change in the ionosphere bright-

ness with zenith distance, and came to the conclusion that zodia-

cal light changes its brightness regularly within very large limits,

depending on the time of year. In general, it was found that in

those months when zodiacal light occurs under the bestvlsibility

conditions - i.e., when the ecliptic is more steeply inclined

toward the horizon - its brightness is greater. According to

Elvey, under poorer visibility conditions the brightness of

zodiacal light decreases. Elvey found a possible connection be-

tween this phenomenon and certain comets. However, there is no

doubt that visual observations provide material which is too in-

definite and is unsuitable for an accurate discussion.

In order to formulate an opinion regarding the true phenomenon

of zodiacal light, independent of airglow and free of the total

stellar brightness in our galaxy, it is necessary to perform sys-

tematic observations using _hotomete_s designed for this purpose.

It thus becomes immediately apparent what an important role the

terrestrial atmosphere plays in such weak phenomena as zodiacal

light, which is not confined to any definite shape. When observing

any region in the sky, where the zodiacal light is located, we are

actually measuring a group of three different components:

i) the earth's airglow, which is produced in ionosphere layers

and, to a certain extent, is also scattered in the troposphere;
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2) The total brightness of all the stars comprising our

stellar system, which is also absorbed to a certain extent and

scattered, particularly in the troposphere;

3) The airglow of the zodiacal light itself, which - as

can be seen by its name - is related to the zodiacal zone, i.e.,

to the ecliptic, and is caused by the dust medium in the solar

system.

/161

In order to separate the latter component, in which we are

primarily interested, it is necessary to take the first two com-

ponents into careful consideration. In addition, it is necessary

to take into account the absorption and scattering of zodiacal

light in the terrestrial atmosphere, and to perform the correspon-

ding reductions. Only after this process, can we expect to obtain

material which is comparable with theory. When formulated in this

way, the problem proves to be unusually complex, and will not

yield to a rigorous solution at the present level of scientific

development.

At a later point, I shall attempt to determine the actual

brightness and actual system of isophotes for zodiacal light,

applying approximative methods which can, however, be overloaded

with systematic errors. The difficulty of the problem is aggra-

vated by the fact that thebrightness of the zodiacal light

represents only a small portion of the observed brightness in

regions which are far removed from the sun. The brightness of

zodiacal light exceeds the other components of night airglow

only in the regions close to the sun. However, these regions

close to the horizon can only be observed for a short period of

time, are almost impossible to photograph, and are distorted to

the greatest extent by atmospheric influences.

First of all, let us try to determine the main component

of night airglow whichdepends on ionosphere emission. In order

to do this, it is necessary to know the law adhered to by this

airglow as it changes with zenith distance. The height of the

emissive ionosphere layer above the earth's surface serves as a

basic parameter determining this change. There have been no

reliable determinations of this parameter up to the present time.

As will be seen from the following information, according to our

determinations the height of the emissive layer is about 260-270 km,

and almost coincides with the ionization layer F, which always exists /162

under nocturnal conditions, in contrast to other ionization layers.

It can apparently be assumed that this height is constant, without

a significant error in deriving the brightness of the terrestrial

component. The transmission factor of the terrestrial atmosphere

serves as another parameter, which changes from night to night and
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which must be determined in passing by meansof photometric observa-
tions on zodiacal light. As of the present, there are no advantageous
methods for determining atmospheric transmission, which can change
systematically not only throughout the night, but also at different
azimuths depending on the properties of the underlying surface. The
main obstacle impeding the photometry of zodiacal light is the lack

of reliable determinations of atmospheric transmission.
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CHAPTER 12

Theory of Night Sky Airglow

In order to draw a distinction between the intensity of the

atmospheric component and the over-all night sky airglow, it is

necessary to start with the known height of the emisslve layer

above the surface of the earth. As spectroscopic observations

have showg., the night sky airglow is characterized by the bright

llne 5577A of metastable oxygen,ln the green part of the spectrum,

the yellow sodium lime 5892, and the red oxygen lines 6300 and

6330, which represent two components of a triplet.

The green llne dominates in visual rays. In addition, there

is a large amount of emissive bands in the more refractable por-

tion of the spectrum; these bands belong to the first positive

and second negative series of molecular nitrogen. These bands

are apparent only for significant exposure, and can be barely

distinguished on the continuous background of the night sky air-

glow.

Two methods can be used for de6ermining the height of the

emisslve layer which belongs, apparently, to the ionosphere.

The first method consists of photographing the spectrum

of the night sky using a hlgh-transmission spectrograph simul-

taneously at several zenith distances, beginning from the

zenith up to z = 80 °. By measuring the ratio between the bright-

nesses of individual emissive lines, one can determine the height

of their airglow.

The other method is very similar, and necessitates photomet-

ric measurements of the night sky brightness, for example, in

common visual rays, also at different zenith distances. However,

the assumption is thus introduced that all the primary emlsslve

lines pertain to approximately the same height. In addition, this

method requires that the measurements are carried out in absolute

units - for example, the measurements are expressed in the number

of stars of the fifth magnitude per square degree of sky - since
the determinations which are made must not contain the total

brightness of stars or other cosmic sources of light.

Generally speaking, a change in the brightness from the

zenith to the horizon depends not only on the height of the

emisslve layer, but also on its thickness. However, the effect of

the latter is negligible, according to the studies made by Barbler.

If the brightness distribution is not changed as a function of

_163

_/164

13e



zenith distance, it can be assumed that the emissive layer has

an infinitely small thickness. _.Ivey derived an accurate formula

which took into account the thickness of the layer in several

hundreds of kilometers, and he showed that the same result is

obtained as in the case of an infinitely thin layer. The deriva-

tion of this formula does not entail any difficulties.

Theoretical considerations show that the thickness of the

emissive layer must be insignificant. Actually, according to

Chepman (Ref. 59), oxygen emissive lines result from the

process by which oxygen atoms are dissociated and recombined

under the influence of solar radiation. The solar energy dis-

sociates 02 by day; by night, atoms of 0 are recombined, and

again form 02, so that

'0_o + o.

A third particle N 2 or 0 thus participates. The energy

liberated during the recombination is transmitted to this

third particle - for example, 0 - and excites it to produce the

emissive line 5577. This process can take place only in a

comparatively thin layer, where there is a good possibility

of a simultaneous collision between three particles and where,

on the other hand, there is an adequate amount of atomic oxygen.

The brightness of the emissive layer (J) cannot be constant,

but changes as a function of _. We shall th@refore assume that

). = : (?).

Let the line of sight, which is directed from the observer A

at the angle of the zenith distance z, intersect the emissive

layer at the point B. If the angle between OA and OB at the

center of the earth 0 is _, we then have

sin (z-- _) = si.____
_+n ' (18)

while the angle a is a small quantity.

Let us use $0 to designate the geographic latitude of the

observer; $ - the latitude of a point on the surface of the earth,

at the zenith of which the point B is located. Let A be the

azimuth of the direction AB.

We have

sin 9 = sin_o cos m--cos 9o sin _cos A

or
sin ._ = sin _o _ _cos _o cos A.
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We find from (18) that

htgz :' hz tgsz "'.qL..+ 2

On the other hand,

2 sin_ --_0cos _ _-_0 _'_ _= -- c0s?0 cos A._--sin_0--.
2 2. 2

Confining ourselves to the first terms, we have

htgz cos A.--?o -- A_,= -
lq-h

It can always be assumed that the brightness of the emissive

layer, in the atmospheric region above the level of the observer,

changes linearly with latitude. Therefore, it can be assumed that /166

or

j = ,=(,po+ a o)= e C Oo)+ (iI 
\a_/o

)=)o \aq,)ol +#_

If we designate y as the relatlve alrglow gradient with res-

pect to latitude

Jo \d_/o'

we find the following expression for the observed airglow of the

emissive layer in the direction of the line of sight (z, A), when

there is no absorption or scattering in the intermediate layers:

J =)o
h 180igzcos A)(l-l-h) |--y 1_-h

Vc(1 -F h) t --sinZl

where J0 designates the emlssive layer brightness at the zenith of

the observer. What may be the magnitude of y? It is quite probable

that the radiance of the night sky increases with latitude. In

1934 1 photographed a region in the sky around the celestial pole,

where the stellar configuration always remained the same, at Kitabe

(4 = 39° 8'), Tashkent (41 ° 20'), and Kuchlno (55 ° 45') near Moscow



(Ref. 60). A tubular photometer was employed for the photography,
which was performed on the sameplates with the sameexposures
but at a different time. The radiance of the sky was muchhigher
at Kuchino than it was at Kitabe and Tashkent. In 1940/41, I
madeanother attempt to determine any changein the radiance of
the sky at different latitudes. Systematic observationswere or-
ganized at Bukhte Tikhoy (N. P. Uspenskiy), at Franz Josef Land,
at Kuchino, and at Simenze (P. F. Shayn[Ref. 61]). The observa-
tions were performed with multistage radioactive photometers which
I constructed. Thesephotometers madeit possible to comparethe
radiance of the sky with self-luminous sections having a different
brightness. These sections were madeof zinc sulfide with an ad-
mixture of a radioactive substance, which served to excite the
fluorescence. The photometers, which were produced at the same
time, were comparedwith each other on the optical bench of the
Kuchinskiy Astrophysical Observatory. It was found that as the
latitude changes from to 80° to 45°, the brightness of the sky
can be represented linearly. The gradient y equaled 0.092 for

= 45°, which represents a change in the brightness of the
sky from 80 to 44°. However, these observations were not absolute-
ly conclusive, since the properties of the underlying surface
could not be taken into account. In addition, the Bukhte Tikhoy
station was close to the region of maximumfrequency of the
aurora polaris, which could distort the observational results in
manycases. In addition, the illumination of the atmosphereby
the sun, which causes the accumulation of energy which is lost during
the night, is entirely different in the north than it is in the
middle latitudes, particularly during the polar night. In any
case, the results derived from these observations - the existence
of which cannot be doubted - cannot be directly applied to inter-
preting the radiance of the night sky at individual points on the
earth's surface.

In this connection, we should note that the observations of
L. Rayleigh, which were performed at the more southern latitudes,
apparently did not evidence any purely latitudinal effect, as can
be seen from a discussion on this subject which took place at the
Korolevskiy Astronomical Society in 1945 (Ref. 62). It is more
reasonable to determine the magnitude of y by analyzing the radiance
at different points of the sky, observed at a given location at
one and the same time. Weshould note that the distance between
an observer and a point on the earth's surface, through whose
zenith the line of sight passes at the height h for the zenith dis-
tance z, is quite large, namely:

805.

8_°

I0

60¸

II0

100 ,3OO

450 1000

700 1160

I000

2400

2800
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If a comparison is made between the radiance of the sky at

different points on the horizon for large zenith distances, it

will be possible to discover a distinct latitudinal effect if it

exists. However, this type of observations does not lead to

definite results. Very frequently the sky is brighter close to
the northern horizon than it is at the same altitude close to the

southern horizon, but this difference does not usually change

with the azimuth according to formula (18) and can depend on dif-

ferent factors. These factors include, for example, the effect

of zodiacal light, which can produce additional airglow in the

north around midnight, as well as different properties in the

underlying surface of the earth. Thus, for example, the brightness

of the sky in the northern section of the horizon, in the vicinity

of Alma-Ata in October, 1945 was slightly greater than in the

south at the same zenith distance. There was clearly no influence

from the zodiacal light. The brightness of the sky was almost

exactly the same in the west as it was in the south, which contra-

dicts the formula presented above. However, the properties of the

underlying surface were completely different in different direc-

tions: a dull, sandy desert extended to the north, and a dual range

of high mountains which were covered perpetually with snow was

located in the south. Nevertheless, the latitudinal effect would

have to be quite small. In order to solve the problem, it would

be necessary to carry out an adequate number of observations at

different azimuths of the sky, close to the horizon and far from

the Milky Way and the zodiacal light. The observations would also

have to be carried out in a region where the properties of the soil

were the same for hundreds of kilometers, preferably in a desert

with a low reflecting capacity. For the special purpose of deter-

mining the height of an emissive layer, the observations would

have to be performed close to the first vertical (A = 90=), where

there was absolutely no latitudinal effect. The observed bright-

ness of the sky could then be represented in the form

[90
Yo(1 ÷ h) (a_s)-

VC(l -[- h), --- sin' z"

where (abs) is the factor expressing absorption and scattering of

light in a medium between the ionosphere and the observer.

This factor is primarily determined by low air layers.

In the case of a light source having a small angular dimen-

sion, the light absorption is determined by the usual factor

pSeC z, where p is the transmission coefficient. The position

is completely different for extended objects, especially for

night sky airglow which occurs at all points in the celestial

sphere, since in the given case light which is scattered in the
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troposphere is more or less important.

Dufay first focused attention on this in 1928 (Ref. 63),

employing a method for determining the diffuse light, which, how-

ever, was not accurate. In 1938, Dufay, Kabani, and Gozit also

employed a rather cumbersome, semi-empirical method for this purpose,

in order to determine the height of the emissive layer. In those

cases when such a determination was not carried out, rather strange

results were obtained, as occurred in the studies of Abadie, Vassy

and Madam Vassy (Ref. 64).

In a recent investigation of the emissive layer height, Elvey

(Ref. 65) employed a purely empirical method to determine the diffuse

light, not ascribing to it any theoretical basis. Determining the

normal transmission coefficient p = e-k from the observations, he

reduced the observed brightness of the emissive lines using the

factor

k

This procedure by Elvey is only justified by the fact that close /170

agreement is thus obtained between the determinations of the emissive

layer height at different points in America, where the study was

carried out.

In 1944, D. Barbier (Ref. 66) used a similar method, based on

employing a transfer equation, assumlng that the atmosphere had purely

scattering properties.

If we examine an atmospheric volume dv = dsdx (ds - cross-section

of the base, dx is the altitude), through which a stream of radiation

J (calculated per unit of solid angle) passes in the x-direction, then

the transfer equation - as is known - will be

a_!= _ al + aJ.
ttx

Here oJ is the amount of radiation scattered by a unit volume in

unit of solid angle in the x-directlon, out of the total radiation in

all directions passing through the given volume.

If it is assumed - as Barbier did - that the scattering proceeds

according to the Rayleigh formula, then

16-!sJ -----_ (14-cos0"13)lcl,,,
(19)

where 8 is the angle between the incident and scattered rays. If the

radiation is isotropic, then

J -- I°
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Let us introduce the optical thickness • according to the

equation

d_ ----_dx,

where o is the scattering coefficient.

The transfer equation assumes the form

at =--l--_ J.
d*

Assuming that J is constant throughout the entire atmosphere,
we have

I=J+Ce-_.

Let us set the following at the boundary of the atmosphere /171

==0 and 1__4.

If _I is the optical thickness of the entire atmosphere, we
then have

0

The first term represents the observed brightness on the

surface of the earth, in the case of a point light source; the

second term is the additional brightness representing diffuse

light. For

z,-+.oo, /---+£'

For any point in the atmosphere, we have

l=loe-_.+J (1.2e-O.

Substituting this in equation (19) and deriving a solution

with respect to J, we find

J-- /10e-_(!+ cos2_)do,

/e-_(l q-Cos'_)a_

Let (Zl, AI) be the horizontal coordinates of an observed

point in the sky; let (z, A) be the coordinates which determine

the direction of a certain stream scattered in a given volume.

It is apparent that

cos }--cos z cos zt+sin z s!n zxcos.(A -- AO.



We have

where

_ _ . ffloe--_(l. + cos' 13)sin zdzdA
1---= lee- + .... ± _ " -- (1 -- e _),

ffe_(1 +cos, _) sin zdzdA

-_" _0 see Z,

z 0 is the optical thickness in the vertical direction.

In order to simplify the calculations, Barbier assumes the fol-

lowing under the integral sign

Integration becomes possible, and it is found that

Lr(u-icos'
1

,_ 1/_,," '

az = (1-+-h) _- t; cosz=u

(it is assumed that the radius of the earth is unity); I00 - desig-

nates the brightness at the boundary of the atmosphere and at the
zenith.

It thus follows that

while

.,'o= #o(p, :---'t',cos' zO,

23VF+-3,]

!172

where sh-lx is the argument whose hyperbolic sine is x.

Incidentally we have

Thus,

'slt-' x=lge(xJt-1/F+ x' ).

l..-----loe-_,s_,-_-(1 e--',*_c',_j lo°tr:_-x-- F_ cos2 zl).

Inserting the value of I0, up to the proportionality coefficient

139



we have

I-_ (l-_h) e-_,'eez*
V'if_h)'-si.'_l -J:(1 --e_. 5oc_,)(f_ -- F_ cos' zD,

0
since I0 = I. According to the calculation of Barbier, the

values of FI, F2 for different h are:

h (K.).
FI° • . .

,t_ 2 • • . .

50
1.49
0.25

r

100
1.30
0.20

150
1.19
0.16

200
1.12
0,14 JI300 400 ,500

1.03 0.90 0.92
0.12 0. I0 0.09

1000
0.78
0,05

For example, for h ffi300 km

0.50
o.0o
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I-- 1.047 pSee Z,

l/ 1.047i'_-sin ,-zt
+ (1 --p_°c'z 9 (1.03 --0.12 cos 2 :t),

where p is the normal transmission coefficient.

It can thus be seen that the first term increases, reaches a

maximum, and then decreases for large zenith distances, whereas

the second term increases monotonically and can have values which

are comparable with those of the first term. Under normal condi-

tions (p - on the order of 0.8), the effect of the second term is

quite large. The first term yields the first approximation

only for an unusually pure atmosphere under mountainous conditions.

It was assumed above that throughout the entire atmosphere

J = const. Barbier estimated the approximate change in J through-

out the atmosphere, calculating its value at ground level and at

the upper boundary, formulating an implicit assumption regarding

the monotonic course of J. One simplification is thus made -

namely, a hypothesis regarding the spherical form of the scattering

indicatrix is thus introduced. In this case, the following is

obtained for ground level

fT loe---_'sin zdz

j_ =o

fL-=, si..d. +,
o

and at a sufficient height above the emisslve layer

f2"l o sin zdz

JA 0

.feT'_'sin zdz -]- I

14o



As has been indicated, _I is the optical mass of the atmosphere

measured downward; _2 is the same mass, but measured upwards. In

the case of a spherical indicatrlx, x I = x2. The calculations of

Barbler lead to the following results:

h=oo vo=O.Oll 0.459 0.541 0.500
0.043 0.408 0.592 O.fiO0
0.174 0.272 0.730 0.500

h=lO0 KM 0._11 1.06 1.23 1.14
0.043 0.86 1.95 1.]4
0.174 0.47 1.67 1.14

The mean value of J0 is determined by the expression

'IJo= -_- lo sin zdz.
0

It can thus be seen that under ordinary conditions J changes

greatly within the atmospheric limits, and therefore the basic

supposition of Barbier is invalid.

Thus, for example, for p = 0.80, TO = 0.2. As can be seen

from the Table, J changes by several factors between the upper

and lower boundaries of the atmosphere independently of the

emissive layer height. If it is assumed, as Barbier did, that

J changes linearly with height (the second assumption) - namely,

if it is assumed that

l=Ia Is--& "r,
'gl

- then we obtain the following formula for the brightness of

the sky observed from the surface of the earth

i,=Ioe -_, + la(1-- e-=,)
JA --Js

('q -- I + e-_,).

This formula differs very little from the preceding one only

for very small values of x I.

The method assumed by Barbier for determining diffuse light

is correct in principle, but due to numerous simplifications it

entails systematic errors, which are impossible to evaluate.

The primary simplifications are as follows: I) the hypothesis

regarding J as constant throughout the entire atmosphere; 2) the

application of the scattering indicatrlx of Rayleigh; 3) a dis-

regard of the factor e-r = pSeC z under the integral sign when

/174
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calculating J0-

fhere is no doubt that very extensive and cumbersome numerical

calculations are required even in the case of pure scattering when

making a rigorous application of the transfer equation.

The effect of diffuse light can be determined more directly

on the basis of the following considerations (Ref. 67).

Let us regard each element in the emissive layer as an upper

source of light with respect to the troposphere. According to

existing determinations, the effective height of the emissive line

airglow is several hundreds of kilometers, while scattering is con-

fined only to a thin atmospheric layer close to the surface of the

earth within a range of several kilometers. Observations show

that a distant source of light - for example, the sun - illuminates

the vault of heaven due to scattering in the troposphere, according

to the formula

i= kf (o) (z, z,) secz.

where f( 0 ) is the function which depends only on the angular

distance from the sun and which characterizes the scattering

indicatrix; _(z, Zl) is the function which depends on the zenith

distance of the sun z, the zenith distance of an observed point

in the sky z, and the transmission coefficient p.

In the special case of Rayleigh scattering, we have

f(O)=l Jr cos_.

On the other hand, as the theory for the brightness of the

diurnal sky shows - taking into account light scattering of the

first order of magnitude - we have

{Z, gl) pse¢ z -- psecz,
sec zt -- see z

The validity of the ptxmary assumption - to the effect that

the brightness at any point in the diurnal sky is represented as

the product of two functions - is confirmed by observations

within an accuracy of several percents. Thus, for example, the

observations of Ye. V. Fesenkov - Pyaskovskiy in the vicinity of

Alma-Ata in August, 1946 (Ref. 68) yielded the following values for

the brightness of the sky at different angular distances from
the sun:
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TABLE 16

40_ 2.10
60" 2.91
80 ° 5.01

1.54
2.06
3.48

1.27
1.70
3.02

.iO o

I.49

2.06

3.55

60 °

1.54
2.C6
3.15

! .54
2 06
3.66

The right half of the table gives the reduced values of the

brightness (in every case, for z = 60 ° and _ = 60 ° the brightness

is assumed to equal 2.06). As can be seen, the brightness distri-

bution at the same angular distance from the sun is the same, and

depends only on the zenith distance. In the green and red spectral

lines, for which scattering of higher orders of magnitude is

significantly less than for blue lines, the given law must be main-

tained even more precisely. The form of the function %(z, Zl)

indicated above can be experimentally corroborated by the fact that

the value for the transmission index p, obtained with respect to

the brightness of the diurnal sky, satisfactorily agrees with the

values of p, derived on the basis of the usual formula given by

Bouguer.

The illumination of the troposphere at a certain point (z, A),

which depends on the entire emfssive layer brightness _(z, A) is

j=.ec,ilj,.A,, O' pe .ec..ec.s in zdzdA,

wh fle

cos _ = cos z cos zx-_sin z sin z, cos (A -- A 0.

This expression can be readily calculated, if it is assumed

that the emfssfve layer brightness is everywhere the same, and the

scattering indicatrfx f(_) has a spherical form. On the basis of

these assumptions

../177

Assuming that

we have

-.
2

J-- C secz,_ pSeCZpSeez,
SCC gl -- SOC g

0

sin zdz.

x:ksecz; x,:lesecz,,

Co

I e x dx

l=Ck_'x, -- e-" __
• • .V,1 _ X " X_"

k

i#3



We should note that aecants of zenith distances

in this expression, instead of atmospheric masses.

Since

I = I_ I !

(x. - x) x' _,c_ + _- +

we obtain the following by simple reduction

are used in

while

O0

i e--_-e -'_ ax m(-k) e-_. Ink+
• .e d 4

+l e_+, [E_"(xt -- k) -- e-", In (x, -- k)l+
d

Oo

Ei (-- k) :==-- I e -" dXx and k--_---In p.
k

Finally we find

-/= cos z,p _eez, (El [k (sec z x - - I)] '-- 1,1 [k {sec z,-- 1)] + In k) --
C

-- p*°_"--l- p-Jr E i (--" l') ( k -- cos z,).

On the other hand, let us assume that the brightness distri-

bution of an emissive layer is most pronounced and follows the secant

law, i.e.,

Then

j(z, A)--=secz.

2

' psecz _ pSeCZt
J=--C see z 1 [(0)

sec zx- secz
0

sin z sec zdz.
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Assuming

that

or

that f(0) = const, by integrating this expression, we find

Oo

" pX _ psccz, dX
1 =-=C see z, "_

See "_l -- X X

I

OO

" e -x -- e -xt dx
I---_ C sec z_k ._ •

X 1 --X ._
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Since

we have

1 I 1

(xl -- x) x xxl (x_--x) x,

[ ; 1. ] e -x

l=Cseczl --e_(--X)xx -]--_ x-_--x dx --
k

'! (ln_Ink)+ x_3._.--xC st C zxe --r' "._._" --
k

oo

" e--____xdx -- e---".'£_i(x I -- k)
'X z _ X

k

....
k xL--k

d_
__°

z
-In oo_ln (xl --k),

/179

since

o0 oo

--a a

Consequently, we finally have

J = C {-- Ei (--k)-t-pS°cz'Ei [k (see z I -- 1)] __. ,_cz, In k --

__ pse¢_, In [k_ (sec zx _ 1)1 }.

We should note that infinity _ designates a simple number

which is rather large as compared with unity. In fact, in terms

of this problem this is the maximum value of the atmospheric mass,

i.e., a quantity on the order of 50 - 60.

The following must be taken into consideration when calculating

these expressions:

El(o) - in(o)= 0.5772 is the Euler constant.

The following Table gives the relative course for the values
of J in both cases:

SeC ZI

_=_ corlst ......

] c_SeC Z ..... 1.00 11.00

• 2

1.72

1.17

2.32

1.30
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As can be seen, the effect of tropospheric diffuse light

depends to a high degree on the brightness distribution in the

primary light source.

As is known, the effect of light scattering by the tropo-

sphere increases toward the horizon, while the observed brightness

of the ionosphere increases at first, then - after a definite

zenith distance - begins to decrease. The relationship between

purely ionospheric and tropospheric airglow depends on the

condition of the troposphere, and must be derived from observa-

tions. We shall show that the corresponding coefficient of

proportionality can be found under our simplifying assumptions
as the ratio between the illumination of a horizontal surface

from the sun and from the vault of heaven. Actually, let L

be a stream of radiation from the sun outside the atmosphere

per unit of surface in a normal direction.

Per unit of horizontal surface, the stream of radiation

will be

L COS Zip see z.

On the other hand, the brightness of the vault of heaven

at the point (z, 0) is

pSeez _ p S_c
ZI

7:: L _-1"(0) secz
R sec 2t_sec Z

and therefore, under the assumption that

_-f (a) = K = const,

the illumination of a horizontal surface from the entire vault

of heaven will be

2

2rcL K _ pSe¢ Z, -- pSe= z
secx_ SPCZl

0

sin zdz.

The ratio between these quantities S, which can be readily

found from observations, is represented by the formula

2

p'_¢-',S := 2_ sec -, sin zdz.
• J sccz--,socz I •

.0

The right part of the equation represents the ratio between

the brightness of tropospheric diffuse light and the brightness of
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the stratosphere, and determines the factor K.

Let us examine this problem in the general case.

As was shown above, the observed radiance of the ionosphere

can be represented by the formula

or

g =

\ tgacosA) (1 -]-X)

I/(1 -}- h)'-_ sin_z

J =joF(Z, A)(1 A_ X)p_,¢_,

where J0 is the brightness of the ionosphere at the zenith; X is

the increase in brightness due to diffuse light in the troposphere.

Let us show that the function X(Zl, A) at the point zl, A is

connected with the function K(Zl) , which is found from direct

observations by the following simple dependence

X(zl, A)=K(zl) FCz,_ ,
.F (z_, A)

while K(Zl) represents the ratio between the illumination of a

horizontal surface from the diurnal sky and the illumination of

the same surface from the sun, at the zenith distance z I.

Let L be the illumination from the sun outside of the atmos-

phere in a normal direction. The observed illumination on a

horizontal surface will be

L COSZlp _e¢_.

is

The observed illumination from the sky on the same surface

S_ _" pSeC z, _ pSeC zL -_ f (0)- see z_-_sec z_ sec z cos z sin zdzdA.

Consequently,

__ f_ / pSeCZ,__p'Secz
K :: _ secz,p- see.. (0) sinzdzdA.

k see Z -- sec Z 1

We shall regard an element in the ionosphere having the

brightness joF(z, A) as an independent source of light outside of

the troposphere. The brightness of the troposphere, produced by
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the entire ionosphere in the direction (z, AI), is

• ' sec Zl, sin zdz dA.

If diffuse light is not taken into account, the brightness

of the ionosphere is

I =jo F (z 1 A) p_: _.

The ratio between these quantities is

X_
11 _. secz, II see z,__psee zF(z,A }f(_}) Psec z -- see z,

sin zdzdA

I k ,osee z, F(z,, AO

It thus follows that

pSCC Z_ pSeC Z

ffF (z,A) f (0) si,, zdzdA
X __ sec z --sec z. F (zJ

psee z, pSeCz F(z l, A t)K F (zl, A *) fff (_) sin zdzdA
SOC X -- SCC z i

In the case of uniform ionosphere brightness F(z, A) = const

X----K.

The magnitude of K is found from direct observations. The

F(Zl)
ratio must be calculated.

F(Zl, AI)

It was indicated above that the latitudinal effect of the night

sky radiance must be very small. Therefore, from this point on

we shall assume that F(z, A) depends only on the height of the

emlsslve layer, and is represented by the simple formula

F(z,A)-- 1 4-h
l/(1 _ h)*.-- sin s z

Let us now calculate X.

The scattering indicatrix f(0) depends on the nature of the

air mass. In the European portion of the USSR, under the conditions

of a comparatively humid climate, when greatly extended ahead, the

indicatrix is also extended to the rear. In central Asia, where

there is a dry and dusty atmosphere, the indicatrix is extended

ahead to a much greater extent - while its extension to the rear
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is correspondingly less - which causes good visibility conditions

at the side opposite the sun and, on the other hand, very poor

visibility toward the sun. However, in rainy seasons the scattering

indicatrix in Central Asia approximates a form which is characteris-

tic for the European portion of the USSR, and is even less asynxnetric

- as was indicated by Ye. V. Fesenkov-Pyaskovskiy in the region of

Talgar at an altitude of 1,400 m for 1946, which was abnormal in

terms of precipitation.

Therefore, I decided upon the average form for the scattering
indicatrix to be used in the numerical calculations. This was ob-

tained by Ye. V. Fesenkov-Pyaskovskiy (Ref. 69) in July, 1945, in

the vicinity of the city of Ivanovo.

On the basis of these figures, the function f(O) can be

represented by the following empirical formula

[ (9)= 1 + 1.652 cos _0 -[- 1_214 cos 30,

which represents the observations quite well, as can be seen from
Table 17.

TABLE 17

f (:))

/ (0)

15° I 20° I30" 40 °

3.03 2.52

2.48 2.17

90 o 110 o 120 °

.00 1.1_ 1.26

.00 !.03 1.13

Let us set in general

n

/(,_):= %"ai cosa ,%
i=0

while a 0 ffiI according to the normalization condition.

It is necessary to calculate the expression
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Let us designate

ff F (z) f (0) ¢?(z, z,) sin zdzdA,

_:o._[i==cos z cosz_ + sinz sinz,cos A.
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2

No =f e(_) _ (z, z0 sin _az;
o

Tg

T

N,=f F(z) _ (z, z,) cos z sin zdz;
0

..... • . • . . t. • . . . • • . .

?_
2

N,=f P (z) _ (z, z,) cos'z sin zdz.
o

It can be shown that

ff F (z) f (0) ? (z, z0 sin zdzdA:=_No + a2 cos * z,N, +

q- sin 2 zla _ _ (No -- N1) W cos8 zla3Ns "I-

3
+ _ _a 3 cos z xsin 2 zl (N_ -- N 3) -l-. • •

Let us assume that

aa-O;

The remaining terms can

The calculations

quadrature for different values

height of the emissive layer h.

a2- 1.652; as-----1.214.

be disregarded.

are carried out using the method of mechanical

of the transmission index p and the

Integrals of the following

way:

The

where

type can be calculated in a similar !185

2ff; (o)_(_, zOsinzazdA--_no-l- a, cos z,,%.T

+ sin' zl a2 2 (no- nl) -]- cos s zaa3n3 I-

3
-1-_ =a_ cos n sin_z_ (n_ - ..,) --I-....

n

2

ni ----f ? (z, z_) cosJz sin zaz.
o

ratio between both double integrals is the desired quantity

15o



F(Zl)'.

These values of F(Zl) are given in Table 18.

TABLE 18

i l
0.83

0.86
0.89

F(z_)

h = 0.04

! !.5 2 3 ,1 6

] .66

1.68
1.70

1.71

1.73

1.000

1.80

1.82

1.81

1.86

1.885

1.134

1.895
].855

1.375

1.90

1.925

1.806

1.856

1.875

1.905

1.925

1.96

2.369

1.855

1.875

1.905

1.93

1.96

2.710

¢

1.85

1.875

1.90

1.93

1_95

3.142

0.77

0.80

0.83

0.86

0.89

F(z_)

h = 0.C6

•1.58

1.59

1.60

1.61

1.68

1000

1.68

1.70

1.72
1.73

1.74

_.406

1.7251
1.74 :

1.7.5

I 77

t .79

' .735

1.74

1.755

1.77

1.79

1. 805

2.1,"5

1.74

1.76

1.78

]. 79

1.81

2. '1.59

I

• i.74 •

].76
!.78
1.80

1.81
2.725

F(Zl)
We thus find the relationships which we require

Table 19). F(Zl)

(see

Let us now determine the magnitude of K, i.e., the relation-

ship between the illumination of a horizontal surface from the sky

and the illumination of the same surface from the sun. This can he

determined experimentally by the photometric method.

A surface covered with magnesium vapor is placed on the level

on a high stand. At a small distance above it, a flat mirror is

placed which transmits light which is reflected from the surface

into the tube of a "diurnal sky photometer". Another photometer

tube is directed, as is customary, toward the zenith. If desired,

a small screen can throw shade from the sun onto the surface,

leaving the rest of the sky exposed. A photometric wedge can be

used to equalize the brightness of the field of vision sections

which receive light from the zenith and from the horizontal surface,

both when it is shaded and when it is fully illuminated. The
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difference in the wedge readings is taken, and the desired ratio
K Is thus determined. The observations were carried out by a
student at the Institute of Astronomy and Physics of the Kazakh
SSRAcademyof Sciences, M. G. Karimov, in an area at the
Astronomical Observatory located on the outskirts of Alma-Ata,
where the horizon was almost completely exposed. Green and red
Schott filters with effective wavelengths 547 m_ and 625 m_
were employed.

The first filter corresponded closely to the maximum
sensitivity of the eye.

TABLE19

h = 0,04

0.77

0.80

0.83

0.86
0.89

1.0

] .66

1.68

1.70

] .71

1.73

1.255

1.271

1:285
1.295

1.315

1.015

I .Oz7

1.04
1.052

0.066

3

0.782
0.792

0._04

0-812
0.822

I

o.677
0.684

0.696

0.705

0.716

0.589

0.597

0.605

0.615

0.621

h = 0.C6

0.77

0.8O
0:83

0.86

0.89

1.58

1.59

1.610

1.52
1.63

• 195

.210
.216

1 .:J32

1.23B

0.993

1.003

1.012

1.020

1.032

0.797
0.803

0.812

0.820
0.'827

0.708
0.717

0.722
0.728

0.737

0.638

0.646

0,652
0.660

:0.665
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Similar observations were also carried out by A. P. Kutyreva

in 1949 with a Yanishevskly pyranometer having different filters.

This pyranometer was systematically shaded, as was indicated above.

The values of K, obtained by Kutyreva with a green filter for an

unknown transmission coefficient of the atmosphere, were as follows:

I l
see z [ I I 1.5 2 3 4

[ I

K ..... 0.08 0.12 0.16 0.2,1 0.32

Observations employing the Yanishevskly pyranometer entailed

the same principal disadvantage that light is thus recorded which

passes through the surface layer of the device, and is not reflected

].52



from it. In the case of transmitted light at large angles of

incidence, the portion of energy influencing the thermal elements

can be significantly reduced, and therefore the values of K can

be invalid to a certain extent, particularly when the sun is low.

On the other hand, in the case of a plate which reflects light

according to the law of Lambert - which is exactly the case with

a surface covered by magnesium vapor -the observed relationship be-

tween the brightnesses closely corresponds to the desired illumina-

tion relationship.

Due to the fact that I had the preliminary values of K which

were obtained with the Yanishevskiy pyranometer, I examined the

observations performed by Elvey (Ref. 70) which were carried out

in different localities in America (Chile, Argentina, vicinity of

Chicago, etc.) and also at the MacDonald Observatory in Texas.

The purpose of these observations was to determine the effective

height of the ionosphere layer luminescence.

For the observations Elvey employed a spectrograph with a

collimator, which was 20" long, and with a Schmidt camera with

a 2" aperture and with an aperture ratio of 1:0.66. The disper-

sion comprised 1500 A/mm for the sodium line. Rectangular

prisms were placed in front of the slit, which was 2" long. These

prisms made it possible to expose sections of the sky simultane-

ously at zenith distances of 0 °, 40 ° , 60 °, 70 °, 80 ° and 85 °. A

standard lamp which produced a spectrum through an additional

prism was employed to control the transmission uniformity of

sections of the spectrograph. The candlepower uniformity of

the lamp was controlled by a photoelement with a barrier film.

The latter comprises one shortcoming of the method, since the

sensitivity of such a photoelement strongly depends on temDerature,

and the temperature must change during the night. A correc-

tion for the sensitivity of the photoelement was apparently not

introduced. Elvey did not provide original data in his study. He

reduced the observed brightnesses to the boundary of the atmosphere,

making the formal assumption that it is satisfactory to employ an

increased value of the transmission coefficient, which corresponds

to an optical thickness which is two times smaller than the normal

one, in order to determine both normal absorption and diffuse

light.

Thus - as can be assumed - if the transmission coefficient

during the observations of Elvey equals 0.85, which corresponds

to an optical thickness of k = - Inp = 0.162, then - according

to this author - the following is assumed for reduction of the
observations:

kl---- 0.081, i.e., Pl_-_ 0.922.
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Photometer of Night Sky

Our preceding discussion shows, however, that this is incorrect. ]189

If we base our argument on calculations derived from observations

with the pyranometer, then for p = 0.80 we find that the correction

for diffuse light assumes the following values:

TABLE 20

O. 04

0.06

O. 134

0.127

1.5

O. 1_2

O. 146

0.165

0.160

O. 190

O. 193

0.220

0.229

The entire reduction for the atmosphere is pSeC Z(l + X)(Table

21), i.e., it barely depends on h.

TABLE 21

sc¢ Z

0.04

0.06

i , 1.5

0.824

O. 820

0..609

0.611

Representing these values by the empirical expression apl sec z

we find the following for a = 1.096 and Pl = 0.823:

0c i I 21311001010I00I•00
I_4
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This coincides quite closely with the preceding values. The

constant a has no influence on the distribution of the ionosphere

luminescence intensity as a function of z. It thus comes down to a

certain increase in p, but not a significant increase - as was

assumed by Elvey. If this is taken into account and if the observa-

tions of Elvey are used with a value of p which is not 0.922 but

which is lower - namely, 0.88 - which is much more probable, then

the following distribution of actual brightnesses at the boundary

of the atmosphere is obtained for the green line 5577:

z 0 o 40 ° 60 ° 70 o 80" _.S"

1 IIi 1.00 1.26 1.57 2,09 3.05 3.94

The following theoretical distribution, which is calculated for

different heights of the effective layer (Table 22), corresponds to

this.

TABLE 22

I

!

0.04

0.05

0.06

0.08

1.00

1.00

l.tO

1.00

1.27

1.26

1.26

1.18

I1.80 2.34

I. 77 [ 2.25

1.7.[ I 2.16
1.67 [ 2.0,1

I

:LIO

2,89

2.71

2.43

3.46

3.16

2.92

2.59

255 _

319

382

510

As can be seen, the observations of Elvey are not reliably rep-

resented by a theoretical formula. Nevertheless, if great importance

is attributed to the largest zenith distances, it can be assumed that

h closely corresponds to a height on the order of 300 km, and in any

case not i00 km, where the ionization layer E is located. Performing

the reduction given above for atmosphere, Elvey himself concludes

that h is on the order of 500 km.

Similar results were obtained from photometric observations

carried out at Alma-Ata in 1945-1946. These observations were used,

taking into account the more accurate values of the correction X, for

the effect of diffuse light in the troposphere.

It is particularly important to derive the relationship between

illumination on a horizontal surface from a clear sky and from the

sun, at different zenith distances and different atmosphere transmis-

sion coefficients. The observations indicated above make it possible

to formulate an adequate concept of this relationship, although the
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presence of partial cloudiness, on the one hand, and light cirrus

clouds on the other hand, introduces certain systematic errors.

The drawings given below present the actual observations for certain

days of the relationship between illumination on a horizontal sur-
face from the sun and illumination from the entire celestial vault.

Apparently, the relationship must equal zero for 90 ° . The observa-

tions were performed only in the morning hours, when the atmospheric

transmission was most stable, and barely differed from its nocturnal

value.

As can be seen, at zenith distances of the sun which are less

than 60 °, the atmospheric conditions are usually disturbed and

the indicated relationship is less valid. Therefore, beginning with

thls value of z and up to the zenith, the curve in the graph was

based on an approxlmative calculation, while the change in the

inclination of the solar rays toward the plane of the horizon was

primarily taken into account. Based on the observed curves, it is

possible to draw analogous curves which correspond to equidistant

values of p -namely, 0.77, 0.80, 0.83, 0.86 and 0.89.

The curves corresponding to extreme values were drawn by

extrapolation, and are therefore approximate. All of these curves

are shown in Figure I0.

Determining the ordinate values for different atmospheric

masses and calculating their reciprocals K, we obtain the following

Table.

It is interesting to note that the values of K, which are

presented above based on the observations of A. P. Kutyreva wlth

a Yanishevskly pyranometer, almost exactly correspond to the data

in this Table in conformity with the value p = 0.86, which is most

frequently encountered under the mountainous conditions of Alma-Ata

with an absolutely stable and clear sky.

TABLE 23

SKY-

VALUES OF THE FUNCTION K (_-_---)

P__l 1,0 1.5 2 3 4 6

I
0.77
0.80
0.83
0.86
0.89

0.123
0.109
0.092
0.078
0.069

0.185
0.164
0.139
0.115
0.099

0.2590.222
0.185

0.154
i0.130
I

0.4O0
0.345
0.294
0.238
0.208

0.566
0.470
0.400
0.345
0.294

0._09
0.769
0.667
0.588
0.500
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Figure 9.

Relationship Between Illumination on a Hori-

zontal Surface from the Sun and from the Sky.

F(zl)

Using these data and the calculated relationship F(Zl ' AI),

we can determine the values of X (see Table 24).
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p=O.Sg

0.88

0.83

O.BU

0.77

Figure i0

Smoothed Values for the Relationship Between

Illumination on a Horizontal Surface from the

Sun and from the Sky.

TABLE 24

'_sec z 1.0 1.5 2 3 4
6

0.7/

0.80

0.83

0.86

0.89

0.204

O. 183

O. 1,56

0.133

0.]19

0.532

0._09

O. 178

O. ]49

O. 130

h :=0.01

O. 254

O. 227

0.]92

O. 162

O. J38

0.3]3

O. 273

O. 236

0.194

0.171

0.376

0.326

O. 278

0.243
0.210

0.534

0.459-

0.4C3

0.361

0.310

0.77 1 0.19_

0.80 0.173
0.83 0.1,t_

0.86 0.126

0.89 ¢;.J12

0.221

O. 198

O. 169

0.14. _

I. 123

h =0.06

O. 249

0.'_'_2

0.187

O. 157

0. ; 34

0.318

0.277

O.:_3q

0.!95

0.172

0.:_94

0.342

0._88

0.251

0.216

0.:-._0

0.4o5

0.434

0.387

O. 332
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Thus, according to our theory, reduction for the effect of

atmosphere during observations of ionosphere brightness is expressed

by the factor

p,e¢, (I -I- X).
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Let us try to represent this factor in a simplified manner,

using the empirical expression apl sec z so that for each value

we must have

p,eo_(1+ x) apl,ooz

From an equation of the following type

lg a q- sec z lg _ = Ig (1 -_ X)
p

Pl

we can find the unknowns lg a and lg _ according to the method

of least squares. In order to obtain the correct brightness dis-

tribution over the celestial vault, it is sufficient to know one Pl-

The results can be represented by the following Table:

0.77

0._0
0._3

0.86

0.89

TABLE 25

h=0.0|

p, [ Ap

O. 808 O. 04

O.829 0 03

0.868 0.03

O.889 O. 03

0.919 0.03

h = 0.06

0.814

0.839

0.863
0.889

0.923

Ap

0.04

0.04

0.03
0.03

0.03

_/195

We thus find a very simple method for determining the effect

of diffuse tropospheric light on the brightness distribution of the

ionosphere as a function of atmospheric mass: the transmission co-

efficient must only be increased by 0.03, if the atmosphere has nor-

mal transmission - i.e., if p > 0.80. Representing the quantities

pSeC Z(l + X) by the expression a(p + 0.03) sec z we find the following

values for the constant a.

TABLE 26

= t_.C4 [ h =, .06

I_1 0.77 0.86 0.8_3 ] 0.77 I O.SO I O-b3 I 0.86 0.89

1 1.16

1.5 1.16

9 l i.j9
3 1.17

4 1.18

6 1.22

mean

0.80 0.83

1./4 1.1- 9

i .14 1.1.29

1.14 1.11

1.14 1.11

1.15 1.11

1.17.i 1.13

1.09

1.09

I .Oq

1.08

1.08

1.11

1.0_: 1.15 i 1.131 1.11, 1.09
1.0,_I1.15 I..13! 1.1111.o8

1.07' 1.16 1.14 ! 1.11 1.08
1.06 1.17! I _4 _,1.!I, 1.08

1.061 1.18_ 1.161 1.1-9 1.09
1.07, 1.241 1.:0' I.16[ 1.13

1.08

1.07

1.06

1.06

].07

1.09

1.18 1.15 i IS12. 1.09 1.07 1.17!li 1.151111"121t 1.09 1.07
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Thus, a changes slightly as a function of p, but for a given

state of the atmosphere it remains constant, within the limits of

observational accuracy, for all zenith distances up to 80 °.

_/196

For normal atmospheric transmission, it can be assumed that

in every case the factor contained in the expression for apparent

atmospheric brightness is

I.I(p-[-0.03)s_=z

To a significant extent, the problem of illumination of the

troposphere by the ionosphere was analyzed above on the basis of

theoretical considerations. In order to verify the validity of

these considerations, let us examine a simplified problem repre-

senting the possibility of comparing results with observations.

Let the ionosphere, above the level of the observer, have

identical brightness at every point for all possible zenith distan-

ces, The brightness of the troposphere, as compared with the ob-

served brightness of the ionosphere, will equal the relationshlp

between the illumination on a horizontal surface from the sky and

the illumination from the sun - as is already known.

From the theoretical point of view, this tropospheric bright-

ness can be represented by the expression

J'=f L _ r (_)_ (., ._) sec., a=

or in the given case

J=L _ sec z, ff (D) o (,, z,) da,
• _ *

where L is the brightness of the ionosphere; _, k are the coefficients

of the scattering and absorption; f(@) is the scattering indlcatrlx;

and z is the zenith distance of the observed point in the sky.

The function

(z,zl): l'_¢z--P'e:z'
$0C Zt--SOC

changes very slightly as a function of z. Its mean value corresponds /197

to approximately z = 60 °. Taking the average and taking it out of the

integral sign, we have

J=L i! sec z 1_ (z, z,) f f (0) da.k

The integral

where

7.
2 2x

.(f (a) d_,= f .F(1 + _z_cos' o + a_cos__))sln z,/zdA,
0 0
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cos a-=cos z cos zz -_ sinz sin z, cos A,

can be readily calculated.

Let us take the fact into account that

or

where

We find that

k =-- (1 -j- a2 cos 2 0 _- aa cos a O) sin OdO
o

1

k

as:=- 1.652; as= 1.214.

J = L q_ (z, Zl) 0.417 (1 _ 0.3 cos z t -- 0.1 cos a zl) sec zz.

It can be assumed that the mean values _(z, zI) are as follows

for p = 0.83:

or

sec z, I 2 3 4 6

?(z, z,) 0.14 0.13 0112 0.II 0.09

? (z, z,) =0.15--0.01 sec z,.

Thus, in this case the relationship between the troposphere

brightness and the observed ionosphere brightness will be as follows:

pscc z, \

The theoretical and observed values for this illumination re-

lationship can be compared in the following Table:

_/198

sec zt

O.084

0.09

0.179

0.19

O.288

0.29

0.413

0.40

O. 72

0.66

The agreement is quite good, taking the fact into account that

the calculation was performed with different simplifying assumptions,
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and the observations did not pertain to idealy clear weather. This
simple calculation convinces us once again that our theoretical for-
mulations correspond to reality.

Let us now deal with the problem of troposphere illumination
by all the stars comprising our galaxy. Let us determine the
integrated brightness of all the stars as a function of the galac-
tic latitude, expressed in the number of stars of the fifth magni-
tude per square degree. For this purpose, let us employ the cal-
culations of Searces (Ref. 71) which give the number of stars up to
the tm_-happarent magnitude (m _ 20). The desired integrated bright-
ness ranging from m up to ® is:

f a_m
,/7,, _ J -_m "2"5125-" din.

m

Because the data given by Searces pertain to photographic

quantities, a correction must be introduced for the color index for

reduction to visual quantities. According to Searces, for the en-

tire sky we have

C. I. = O. 16 4-0.050 m.

In order to obtain the distribution of a number of stars with

respect to apparent magnitude, it is sufficient to only add the

value C.I. algebraically to the stellar magnitudes of Searces,

leaving a number of stars unchanged. Interpolating a number of

stars with respect to the constant interval Am and calculating the

derivatives dNm by numerical integration we find the values of

dm

Jm" For different m and galactic latitudes b, we have:

TABLE 27

15 ° "G ° /5° 3 ,° '_0 ° &')° 1 60 °

I

0.054 0.0_4 [7--_ 0._,82 0.070 0.0_? 0.010 0.036!

o--10 0.193 0.16 .2 0.140 0.12_ I 0.101 O.Oq:] 0.080
0--1":; 0.216 0.181 0.1,56 0.1541 0.106 0.086 / 0.072
2--11 0.2:0 0.174 0.112 0.1201 0.0%[ 0.064[ 0.05

4--16 0.19:0.136 0.10-' 0.0'0 0.0-4 0.040] 0.030
16 18i 0.130 0.0_4 0.0,_6 0.0-_0 0 0:6 0.016 / 0.01:2

o. eo_ O.00418--20j 0.068 0.0341 0.02:2 0.016 O.CO;i
.........................

7--20 1.002 0.,448

:7--._-_ 1.136 0.865

7_, o /:t, • , 9, °

0.034 0.030 I
O.072 o. 061t

O.o64 o. 054
0.014 0.040 o.03 ,_
O.O.q-I o.o20i_ ,,2o
o.oloI O.OLOi o.oo 
0.003 O.CO: 0.002

O. 6801 I

0.°9, Oo;  oi°o:Io.°

It must be pointed out that these results pertain to the average
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stellar distribution which is characteristic for a typical stellar
universe. At individual locations in the sky, the integrated bright-
ness of the stars can differ more or less significantly from the
average which corresponds to the galactic latitude. It is particu-
larly important to note that the apparent defect of the stellar den-
sity in the region of the north pole - which, as is known, is
covered by dark nebulae - is barely visible to the naked eye. A
great manystudies have been carried out (Ref. 72) on the defect of
stellar density around the north pole. The following defects can be
assumedin a number of stars having different magnitudes:

/20__o

l
m 7 8 9 I lO II 12

$

A lg N m. --0.02 --0.035 --0"0_" 1 --0.17 --0. I8 _0 _ _ _

I
m 13 I,t 15 16 17 18,

A Ig N m . . --0.3l --0.33 --0.26 [ --0.20
_0 _ _ 6 _ 0 _ _ 9

I

If this is taken into account, we find that the integrated

brightness of stars toward the pole equals 0.399 of our units -

i.e., it is smaller by a factor of 0.18 than the mean value assumed

for the same galactic latitude = 30 °. This conclusion is of sig-

nificant importance, because the region of the sky around the pole

is used as a standard in studying the radiance of the nocturnal sky.

The integrated brightness of brighter stars - for example, from

m = 4 to m = 7 - is small.

This quantity can be determined on the basis of the same tables

given by Searces, using the approximate formula

' -9I_ _ :Z 2.512 s-" Ig Nm+ "_ m

Using the trapezoid method, we find the following as a result of

0 5

20_

numerical calculations:

jT

4

0.264
0.15_

•10_
90_

O.098 I
O.073

Let us examine the effect of the galaxy on the radiance of the ]201

troposphere.

Let us assume that the Milky Way passes through the zenith of

the observational point, so that the galactic pole lies on the horizon

163



or is close to it. Let the integrated brightness of all the stars -
which is expressed, for example, in the numberof stars of the fifth
magnitude per square degree - be L(b), as was found above.

This function can be represented with the aid of the following
simple formula

where

L(b) =C--Ct sin b+C 2 sin 2 b,

C=1.92; C1=3.42; C., -= C_ .
2

The observed integrated brightness of the stars can be represen-

ted by this formula in the following way:

b 0_

L (b) calc ...... 1.92

L (b) obs. 1.8

15 •

1.]4

J .14

80*

0.64

0.68

60"

0.24

0.29

• 90"

0.21

0.21

The brightness of the sky at a certain point with the zenith

distance z I is

or, averaging 9(z, zl), we have

t_

J(z,) := _ z_o( , z,) secz, L(b) daf(O).
)

The scattering indicatrix f(0) is used in the normal form

[ (_))== lr:'a2 cos 2 0-]-a s cos s _),

where
cos O _ cos z cos sin z :_iJt z t cosA

or

cos _::sitl b sin b_-l-cos b cos b t cos l.

z, A designate the horizontal coordinates, and b, I designate the

galactic coordinates. In the special case under consideration,

it is _advantageous to perform integration within the limits of

b = - _ to b = _ .

Since

da--cosb dbdl,

]202
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the problem can be reduced to calculating the simple integral

7g.

2

J(zl)--=-:_-'_(z'zt)seCZl_(C_Cl $inb-[-C-_lsiFIZb)cOSbdb>(k" ,>

2

It must be noted that the sign before sin b must be reversed

when performing integration from - _ to 0.

After performing integration, we find the expression

Ct (2+3 lla"_--C*a"sin2bx20] " _7]

Because

;_------ ! ..... ; a_= 1.652; a3= 1.214,
"1 a. a._2',I

k -It. t, -i 3 -t- 4/

we ob tain

J (z,):0.355 ?(z, zii secz,< (1 4_sin2 b,).

We would like to point out that observations of more than six

atmospheric masses should not be carried out, since close to the

horizon it is usually impossible to guarantee uniformity in the op-

tical properties of the atmosphere, due to the harmful influence of

the surface layer. If the mean value of 9(z, zl) is determined

from the expression

(z, z,) = f f * @"*') siozclzaA
f f sinzdzdA

then there is very close agreement between this mean value and

_(z, 60°). On the basis of this, we obtained the following value of

_(z, 60 °) for different transmission coefficients p.
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TABLE 28

= (z. d} °)

0.77
0.80

O.,q3

0.86

O. 89

0.177

O. 160

0.141

O. I :_0

O. 093

1.5

O. 166

O. 1_2

O.U_6

0.116

O. 036

O. 135

0.143

O. 1:8

0.111

O. 092,

:_ I

O. 137

O. 12_;

0.117

O. }O_t
0.0_8

4 6

O. lJ 0.096

0.115 O.09t

0.107 O.OgO

0.096 0.0_4

O.Ot_ 0.074

TABLE 29

0.77

0.80

0.83

0.86

0.89

0.&55 _ (,-', zt) see zt

O.lJO

0.101

0.091

0.079

0.066

3 t

0.146 0.170

0.132 0.163

0.1?4 0.162

0.110 0.136

0.03l 0.116

0.204

0.200

0.191

0.179

0.158

Thus, the main term in the expression for the troposphere com-

ponent of galactic airglow is as shown above (see Table 29).

As can thus be seen, for normal atmospheric transmission the

correction for scattered galactic light only rarely exceeds 0.15

in our units.

Let us also perform similar calculations in a simplified

scheme, in which

L(b)=C-- Ct sin b H f(O) == l+a_ cos 8.

In this case, the problem can be reduced to calculating the

• • integral

2
b

Z_
"/(2"1) = "k (P (Z, ZI) see _IT_I (C--C1 sin b)(1 +a sin b Sill hi) cos bdb.

As a result, we find

(zO _- ? (z, zJ sec z x _ (2C -- CO.

In this case, no dependence on b I can be determined. It is

/204
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interesting to note that J(zl)does not depend on a I and a3, i.e., on

the asymmetry of the scattering indicatrix.

Let us examine another extreme case, when the galactic plane

coincides with the horizon. In this case, the brightness of the

troposphere at the zenith distance z can be represented with the

same approximation by the expression

and

s (_') ---_k sec z, _ _ t (0) f (o) a_,

do ---- sin zdzdA; L(b) = C-- C, cos z+ ct cos2 z,
2

f(O)=l+a,,cos z _+a 3cos 3_.

with the same values of C, C 1 , a2, a 3.

Calculating the integral, we obtain /205

J(zi) _----_ttseczl?(z, zl)2_[c--Clq-a,/7c-_ ,,-_-_ -- C 1 /-_) +

t
Substituting numerical values, we find

or,

J(zl)= _ sec zl _ (z, zO 2=[1.68+0256 cos z I --

-- 0.28 cos z z,-- 0.46 cos' z,]

finally

'[ " •J (z,)- r (_.'/'. 1.68 J7 0.56 cos z 1- 0.28 cos 2 z I --i0.46 cos_z,] sec z,.

For different values of z I

sec ZI

J • .

If these numbers are

ceding Table for b 1 = O,

and for p ffi0.86, this yields the following:

6 •! !.$ 2 3 4

0.048 0.0_70.IIC 0.!61 0.185 0.239

compared with the data given in the pre-

then it can be stated that the dependence
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with zenith distance is approximately the same, as well as the value
for the troposphere brightness. In the general case, whenthe Milky
Wayis inclined toward the horizon, a solution of the problem entails
a great manydifficulties. However, because the results differ very
little from each other for extreme cases, from this point on we shall
use the tables which were compiled for aligning the Milky Wayin a
normal direction to the horizon.

Wemust now examine the effect of the zodiacal componenton the
troposphere. Wewould like to point out that the brightness of the
zodiacal light increases extremely rapidly as the sun is approached.
Therefore, the brightest sections of the zodiacal light, which exceed
the brightness of the Milky Way, can be observed for only a brief
period of time shortly before sunrise or just after sunset. In usual
photometric observations of zodiacal light, the observer concentrates
his attention on a specific almucantar - for example, about 75° of the

zenith distance. Different portions of the zodiacal light are observed

at this zenith distance leading away from the horizon. This method has

many advantages. In the first place, atmospheric absorption and the

ionosphere component remain approximately the same. Therefore, inde-

pendently of their objective value, the observed brightnesses represent

the isophote distribution of the zodiacal light, and correctly charac-

terize their form and distribution. In addition, the dim portions of

zodiacal light are observed when the brighter regions are still con-

cealed behind the horizon and, consequently, cannot have a distorting

influence due to light scattering in the troposphere. Finally, these

bright portions, which are closest to the sun, can be observed with a

maximum savings in time. During the night the observer is only con-

cerned with the dim zodiacal component, which - as can be assumed -

changes very little in the celestial vault, and produces a significant

zodiacal band only in the ecliptic plane. Thus, it can be assumed that

the zodiacal component has constant brightness in almost every case

when one is calculating the light scattering in the troposphere. In

this case, the additional factor for troposphere scattering, which is

used to correct the brightness of zodiacal light, is simply represented

by the function K, obtained from observations on the illumination of a

horizontal surface from the sky and from the sun. The total observed

brightness of the zodiaca] component (LZ) will therefore be

/206

!Lz) p'°_ " (I-FK).

Thus, the brightness of the nocturnal sky (not of zodiacal light) /207

when there is absolutely no twilight can be represented by the fol-

lowing formula, taking into account both the primary and the secondary

factors

J= T'_-Fh_i,'_ j- b (b,) + 0.3557(z, z,) se,:z, X

X (1--I sin=bO-l-(LZ)p'e='(1AcK)4
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or with sufficient accuracy

j_ c_ (I -_ h) (p + o.o31_z
_ (] ___. h)z $i.,2 k L (Ol)psecz+

-{- O._S_ _p(z, z,)' see z, (1 --lsin'°b')4 -_(Lz)pseez(1-_- K)-
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CHAPTER13

Determination of the Effective

Height of Ionosphere Airglow

Let us employ the theory which was developed previously to

determine the effective height of ionosphere airglow. For this pur-

pose, I observed the brightness of the nocturnal sky at different

zenith distances in the western and eastern portions of the first

vertical, using a photometer which was constructed for this purpose.

The photometer had the most simple construction, and was advantageous

for nocturnal observations. A cylinder, whose head was covered by a

compound having constant illumination made of zinc sulfide, with an

admixture of radioactive substance, moved within a cylindrical tube.

This tube was about 20 cm long and about 4 cm wide, and was mounted

on an azimuthal stand with a level and graded circles. A dull scat-

tering screen, which was illuminated by the fluorescent head of the

moving cylinder, was mounted on the innersurface of the lid, which

was slipped onto the forward part of the tube. Next to the screen

an aperture was made having the same form and dimensions, through

which it was possible to see a small section of the nocturnal sky

through a given portion of the tube. For this purpose, a prism was

mounted on the tube having total inner reflection -- the only op-

tical element in the entire apparatus - and an aperture was made in

the center of the illuminating cylinder, in order to clearly see the

scattering screen in any position.

_208

The brightness of the dull screen changed as the cylinder moved, !209

and was equated with the brightness of the observed section of the

sky, which was recorded on a strip of heavy paper lald on a rule

along the outer generatrlx of the tube. The recording device was

constructed in such a way that it was possible to observe several

objects having different brightness, without confusing them. The

tube was adjusted with the aid of a small selector or by means of

circles which were divided every 5°. The dividing lines on the

circles were lined with a luminescent substance which could be clearly

seen in the dark. Thus, all the observations could be performed in

total darkness, retaining the adaptation of the eye for maximum

pupil dimensions. A lamp was employed for the necessary recordings,

which had similar luminescence and which was bright enough for orien-

tation in the dark, for replacing the strip of paper, for reading the

time, etc.

The same lamp could be used advantageously for standardization

of the photometer - i.e., to express its scale readings in absolute

units, which we used - namely, in the number of stars of the fifth

magnitude per square degree. For this purpose, a lld was slipped on-

to the lamp having a small circular opening which was approximately
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2 mmin diameter. At a distance of several meters, this opening
had an actual star-shaped form and could be readily comparedin terms
of brightness with different stars having a knownbrightness. It was
advisable to paste a piece of white paper onto the lamp lid, in order
that the artificial star would be represented on the background with
approximately the samebrightness as the reference star. On the other
hand, if the lid with the opening were removed, it was possible to
determine the brightness of the lamp base which provides uniform illum-
ination, using the photometer described above. Due to the significant
brightness of the lamp, it was necessary to employ a Talbot disc, which
decreased the brightness by several factors. Thus, this lamp madeit
possible to employ both a point object, comparing it with the stars,
and a surface object, observing it with the aid of the photometer
described above. A comparison of these observations madeit possible /210

to express the photometer scale in the absolute units given above.

Due to considerable reflection from the inner tube walls, there

was thus no possibility of determining the brightness change in the

photometer scale in order to apply the inverse square law.

In actuality, the photometer scale is much flatter, and is almost

exactly linear. Therefore, this scale was calibrated entirely using

a Nagel adaptometer in the optical laboratory of the Institute of

Astronomy and Physics of the Kazakh SSR Academy of Sciences.

Under the program which I had formulated, junior scientific

associate of the Institute of Astronomy and Physics, N. B. Divari,

used this instrument to perform observations on the mountain Laptev

Kurgan, which was 1800 m high and was I0 km east of the village of

Talgar (Alma-Atinskaya Region), and also on the Kamenskiy Plateau

which was i0 km south of Alma Ata at an altitude of 1350 m. Unfor-

tunately, poor weather and unusually violent disturbances obstructed

the actual uniformity of the ionosphere, and made the July observa-

tions invalid to a certain extent. In August, conditions which were

much more stable in every respect were established, and several tens

of series to determine the brightness of the nocturnal sky were carried

out at different zenith distances, as far as possible to the side of

the Milky Way, and also at the western or eastern vertical. By calcu-

lating the galactic coordinates of the observational point, I was able

to determine the effect of the galactic component in the number of stars

of the fifth magnitude per square degree. As a precaution, only those

observational series for which the galactic latitudes were not less

than 30 ° were used. The effect of the zodiacal components at the points

in the sky being studied could be disregarded. Thus, the brightness

distribution at different zenith distances, which was caused by only

the presence of the ionosphere, could be readily determined. Comparing

this distribution with the theoretical curves corresponding to different
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effective heights, we could find the curve which corresponded most

closely to the observations. Tables 30 and 31 present the observa-

tions of N. B. Divari and their reductions (the mean value from

the series is given), as well as the derived values of h expressed,

as is usual, in units of the earth's radius.

/211

TABLE 30

I 21 VII 1
• Z j Z

i

I 18 ° 0.53 [8 °
38 1.03 _.8

58 1.21 38

68 1.54 38

78 1.68 38

38

78

h--O.04

26 VII

Japp red [ J

#

1.09 0.55 [ 0.54

1.20 0.43 0.77
1.45 0.36 1.09

1.62 0.31 1.31

1.78 0.28 !.50
2.02 0.26 1.76

2.22 0.26 1.96

27 VII

Japp re_l

1_16 0.44

3.30 0.35

1.41 0.30
1.60 0.27

1.78 0.25

2.02 0.25

2.02 0.24

h == 0.035 h :0.04

TABLE 31

30 VIII 31 Vlll

0.7_ I

0.95

1.I1

1.33

1.53

1.77
3.78

18.5 °

28.5

38.5

48.5

58.5

6q.5

78.5

Japp red

1.55 0.,18

1.78 0.38

1.62 0.32

2.00 t0.28

2.23 I 0.25
2.33 I 0.25

I

2.,19 I 0.25
{

1.07
1.40

1.30

1.72

1.98
2.08

2.24

28.5 °

38.5

48.5

58.5

68.5

78.5

]app red

1.79 0.46

I .81 0.37
1.92 0.32

2.06 0.28

2.28 0.27

2.30 0.26

h : O.05? h =0.06

1.33

1.44

1.60

1.78

2.01
2.04

[z designates the zenith distance of the observed point of the first

vertical; Japp the apparent brightness in the number of stars of the

fifth magnitude to one square degree; red - correction for the galac-

tic component; j - actual brightness of the ionosphere in relative

units.] On the average, we find that h = 0.044, which corresponds

to 280 km. Analogous observations on the brightness distribution

at different zenith distances in individual wavelengths were carried

out with a nebular spectrograph by a student at the Institute of

Astronomy and Physics of the Kazakh SSR Academy of Sciences,
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M. G. Karlmov. This nebular spectrograph, which had a Leontovskly

design, was described in detail in the Bulletin of the Astronomical

Institute (now the Institute of Theoretical Astronomy of the USSR

Academy of Sciences) (Ref. 73). The collimator with a long slit

had an aperture ratio of 1/6; the camera with a Schmidt optical sys-

tem had an aperture ratio of I:I. A prism system was placed in front

of the slit, which made it possible to photograph the spectrum of the

nucturnal sky at five points simultaneously at different zenith dis-

tances, from the zenith to 78 °. The exposure was made on Is.pan SS

or Is.pan F films, and usually lasted for about I0 hours. The emis-

sion lines 5577, 6300, 6330, and the sodium line 5892, which was

somewhat weaker, clearly appeared during this time. The lines in

the more refracted portion of the spectrum could not be distinguished.

A continuous spectrum was barely apparent, which slightly increased

the over-all background of the film.

The observer usually followed the weather conditions, and confined

himself to exposures when there was a completely clear sky. The trans-

mission coefficient of the atmosphere was determined along with this,

using the method of Pickering. Due to the fact that this method was

based on visual estimates, it could not provide accurate results.

Therefore the atmospheric transmission was determined using a halo

photometer during the morning hours, after the nocturnal observation,

as was indicated above. It was quite simple to derive a theoretical

interpretation of such observations, since the galactic and zodiacal

components had almost no effect on the emission lines. This effect

was only manifested in a slight amplification of the continuous

spectrum located at the boundary of distinguishability. We can thus _213

confine ourselves to employing only the first term in our formula

for the total brightness of the nocturnal sky. The heterogeneity

of the ionosphere structure could not be of significant importance,

due to the long exposure time. Regular changes over a period of

time were also excluded, since all regions of the sky were photo-

graphed simultaneously. I have presented below a summary of the

logarithms determined by Karimov for the brightness of the emission

line 5577 for different zenith distances.

TABLE 32

0o
Date

1945 26/XI
1945 28]X11
1946 26/11
1946 23iVI
1946 30/VII
19'_6 22/VIII
1945 24]VIII
1946 1--2/IX

1946 4--5/IX

P 171

0.80 0.84
0.81 0.84
0.85 0.88
0.85 0.88i
0.85 0.88
0.82 0.85

10.87 0.90
0.84-- 0.87-

]0.85 0.88

0.82? 0.85

0.00
O. O0
0.00
0.00
0.00

45' 60° i 7o° 7,5° [ Is"

-- 0.170 -- 0.215[ --
-- 0.193 _ 0.2£01 --
-- 0.199 -- 0.250[ --

0.2551-- O. 196
0.10710.176 0.217 0.2501 --
0.09310.1640.218 [ -- 0.210
0.1211

o.lo7 o.21o] o.31o0.255 -- 0.258O. 155 O. 2761 [I

0.0% 0.16t 0.176 -- 0.]99I

0.00
0.00
0.00

0.00

hI
O. o-I0

o. 0,to[
o. 043
O. 042

O. 047

O.044
o.o4oi
O. 040i

O. 05?l
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On the average, h = 0.043, which corresponds to an altitude
of 270 kin.

Thus, both computational methods produce practically the
sameheight which is effective for the luminescent ionosphere
layer. In spite of the fact that these determinations do not pre-
tend to be very accurate, it can be stated with complete certainty
that the layer E has no relationship to the night sky airglow, and
that the luminescent layer is located at the height of the ioniza-
tion layer F.
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CHAPTER14

Separation of the Components

ComprisinKthe Nocturnal Sky

Luminosity

A simple survey of the nocturnal sky by the naked eye shows that /214

the luminosity of the celestial vault is caused by three different

components: the earth's atmosphere (whose brightness increases toward

the plane of the horizon, due to an increase in the atmospheric

mass), the total brightness of the stars comprising our galactic sys-

tem, and the zodiacal light (whose plane of symmetry almost coincides

with the ecliptic). Under good atmospheric conditions and when the

Milky Way is located at a high point in the sky, it can be readily

observed that the brightness of the nocturnal sky gradually decreases

at both of its sides. Bright galactic clouds can be clearly distin-

guished on the dark background of the southern sky, but even under

the most favorable conditions their brightness exceeds the region of

the sky around the North Pole by not more than 2 - 3 times. Such a

comparatively small degree of contrast for the Milky Way depends on

the fact that very intense ionosphere luminosity as well as its light,

which is scattered into the lower atmospheric layers, are superimposed

on it. Generally speaking, the celestial regions around the zenith

appear to be the darkest. The brightness of the sky increases con-

siderably as the horizon is approached, so that at a zenith distance

of 80 ° the brightness is approximately two times greater than at the

zenith. Finally, it is _sually possible to see the zodiacal light

in one or another form -sometimes in the form of rather bright

cones - in the east before sunrise, or in the west shortly after sun-

set - or in the form of faint, diffused luminosity in the northern

portion of the sky which combines both cones in the direction toward _215

the sun. It may also appear in the form of a barely distinguishable,

blurred vacant area intersecting the southern portion of the sky

along the zodiacal consellations. Each of these components extends

throughout the entire sky, as would be expected. The phenomenon is

complicated by the scattering of light into the lower atmospheric

layers - the troposphere.

In order to determine the actual brightness and nature of the

zodiacal light isophotes, it is necessary to determine the ionosphere

and galactic components for any region of the sky, and to subtract them

from the total observed brightness. The remainder represents the

desired zodiacal airglow, which must be corrected for the effect of

atmosphere. Generally speaking, it can be assumed that the zodiacal

component is only significant at small angular distances from the

sun, and primarily in the ecliptic plane.

In the celestial regions which are far removed from the sun,
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zodiacal airglow is, in all probability, very faint, and in any case

rather uniform. This can be seen from the fact that the brightness

of the sky is almost exactly the same under very diverse conditions,

at the same zenith distance and approximately at the same galactic

latitude.

The problem of separating the components of ionosphere airglow

at any point in the sky can be fully solved, if it can be solved for

any one point which is most favorable for the celestial pole, where

the zenith distance and the stellar configuration are always the same.

The method which I employed for this purpose is as follows.

Let us assume that the region of the Milky Way, which has a

fairly uniform background, and an adjacent region with a dark nebula

are observed simultaneously. For this purpose, it is most advanta-

geous to take the bright stellar cloud in the Scotum Sct. constella-

tion, which can be observed within wide limits of zenith distances.

Let us determine the brightness of this cloud Scut. Lumin., the dark

nebula next to it Scut. Dark, and the region around the celestial

pole (Polaris) simultaneously.

If the atmosphere has no airglow, and only light is absorbed,

then the degree of contrast between the light and dark portions of

the galaxy would not change.

/216

In actuality, the a_mosphere is superimposed on the stellar

clouds of the Milky Way in the form of a luminescent veil, and re-

duces the contrast - the greater the corresponding zenith distance,

the greater is the contrast reduction.

If there is zodiacal light in this direction, its role can be

reduced to only increasing the component of cosmic airglow.

It was shown above that the observed brightness of the nocturnal

sky can be represented by the formula

J

C (1 -[- h) pl seez

V'(1 -if-h) _ - sin2z
nt- jg,_tp _ _'+ red (b, z) q- LZp _e_z (1 q- K).

For the region of the Milky Way, where b = 0, we have - assuming

that

Je,,t + LZ = )

(j represents the total cosmic component),

c (I -_- h)/p q- 0.03) 'e_z
t- red(b, z) + LZp s°cz .K.
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In the first approximation, the zodiacal airglow which is

scattered by the troposphere can be disregarded - i.e., LZp sec z K.

Assuming for the reduction

we have

t'(z)= l + n
_/(I + h)'--sin'z

J-_jp'_" + CF (z) (p -[- 0.03) '_" + red (b, z).

Employing this expression for Scut. Lumin. (Jl) and Scug Dark

(J2), which are located at the same zenith distance z, and subtracting

one from the other, we find

The remaining terms are excluded. We can find the transmission index /217

p from the set of these equations. This method is very convenient,

and can be employed reliably under the condition that the properties

of the underlying surface are the same at different azimuths. Due

to the southern location of Scutum, its azimuth changes within wide

limits, between the culmination in the south, and the setting in

the southwest. If the atmospheric transmission decreases as one

moves to the west and as the observed object descends simultaneously,

then the straight line which is determined by the coordinates

x = sec z and y = Ig(J I - J2), is steeper with respect to the x-axes.

This corresponds to a larger value of igp and, consequently, to a

smaller atmospheric transmission. Thus, the heterogeneity of the

atmospheric optical properties with respect to the azimuth can lead
to a fictitious value for its transmission. The same statement can

be made regarding the determination of p with respect to the inten-

sity of solar radiation at different zenith distances by employing

the_sual formula of Bouguer. Something similar can occur in the

vicinity of Alma-Ata, where the south is covered by a double range

of high snowy mountains above which the atmospheric transmission is

undoubtedly higher than average. The entire northern half of the

horizon is occupied by a dull desert which is covered by the usual

haze. A change in the weather usually occurs due to the invasion of

air masses from the northwestern corner of the horizon.

It can thus be assumed that the application of this method to

the Milky Way, under the conditions of Alma-Ata, can produce a lowered

value for the atmospheric transmission, which does not correspond to

reality. It may be possibly better to determine p using photometric

observations of stars, whose azimuth during the sunset or sunrise

changes only within narrow limits - for example, _ Aurigae or a Bootis.

However, let us determine p, by whatever method, within an
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accuracy of approximately 1%for night observations.
the equation

J--- red (z) = jp_°¢_ + CF (_ (p + 0.03) _¢_

In this case,

can include only the two unknown quantities j and C, which can be

determined from the set of observations at different zenith distan-

ces.

/218

The quantity j remains constant, and can be determined once

and for all, if the observations are carried out in the same bright-

ness units - for example, in the number of stars of the fifth magni-

tude per i square degree. In this case, by determining j for the

days having particularly good atmospheric conditions, one can determine

the unknown C for all the remaining observational days for which the

quantity p cannot be determined with sufficient accuracy.

The magnitude of the atmospheric component around the celestial

pole will be

where

CP (Zo) (p -[- 0.03) _eez ,

Zo := 90 ° -- 9.

The observed brightness in this region J3 depends on all three

components of night airglow. As was indicated previously, the

brightness of the galactic component outside of the atmosphere close

to the pole is as follows, in the number of stars of the fifth

magnitude per square degree:

)_ = 0.399"_0.4.

The observed galactic component is

)op seez "_ red (b, zo).

The quantity red(b, z0), - i.e., the correction in the galactic

component for the scattering of light in the troposphere - can be

calculated according to the tables given above, in conformity with

the value of p. For example, for p = 0.85 and z0 = 47 ° (Alma-Ata),

we have

loP Se¢_.-_-red (b, Zo) --=0.38.

It is interesting to note that the airglow close to Polaris,

which is caused by the presence of the galactic component, barely

depends on the atmospheric absorption, and can be assumed to be

0.37 - 0.38 in every case. Thus, for example, we have:

/219

178



.Transmission Index p

0.77

0.80

0.83

0.86

Apparent Galactic Component Close to the

Celestial Pole j0p sec z + red(b, r0).

0.272.+ 0.086 = 0.36

0.289 + 0.080 = 0.37

0.304 + 0.071 = 0.37

0.321 + 0.061 = 0.38

The brightness of zodiacal light around the celestial pole

apparently is:

i.e.,

Zodiacal light = Jo -- CF (Zo) (p -_ 0.03) secz, -- ]oP secz. __ red (bo, zo),

Zodiacal light = Jo--CF(zo)(p _-O.03)s_cz°--0.37.

This conclusion is made upon the assumption that the portion

of zodiacal airglow scattered into the lower atmospheric layers can

be disregarded.

We should note that the determined magnitude of the zodiacal

air glow represents the apparent zodiacal light around the celestial

pole, i.e.,

Zodiacal light = (LZ0) pSeC z 0 (i + K),

where K, as previously used, represents the contribution of the

troposphere component. We have compiled it in a table for different

values of p (see Page 156). The first term (LZ0)pSeC z0 is included

in the over-all cosmic component J. The second term (LZ0)pSeC z0 K

represents the additional correction in the observed brightness J.

Solving the equation

J -- red (bo, z) -- (LZ) p_°¢" K =jp_¢¢z _[_ CP _)(p + 0.03) s¢_ z

when all the quantities in the lefthand side are known, we can deter-

mine the unknown j and C in the second approximation. This process

of consecutive approximations can be continued until the new values

of j and C do not differ from the preceding ones.

This general method for dividing the components is based upon

the assumption that the ionosphere brightness distribution is des-

cribed by the function F(z), and does not depend on time throughout

the given night. The latter assumption is far from being always

valid. Let us assume that for each moment of time it is possible to
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determine the total brightness of the night sky around the pole
from observations. In addition, let the given night be characterized
by constant transmission p. Consequently, a changedepends exclu-
sively on the ionosphere componentaround the pole, so that

lo (t) --lo (to)= (1 + h) (p + o.o3W ¢_.[c(t)- c(&)l
]/'(1 + 102 -- sin_zo

At every other point in the sky, the change in this component

with time is expressed by the formula

[Jo (t)--- J. (to)l F (z) (p -{- 0.03) seez- seez.

F (Zo)

If this quantity is subtracted from the value of J(t), then the

observations will be reduced to the moment to, and the method presen-

ted above can be employed.

Thus, in the case of a variable ionosphere brightness, which is

controlled at the celestial pole, the equations for dividing the com-

ponents will be

J-- red (O, z) -- LZp _¢ • K --

F (z) +0 03) _¢_ - _z.- [4 (t) -- So(to)j (p . =

__: )pseez .]._ Cl: (z) (p -[- 0.03) s_cz .

However, it must be noted that in practice reduction to one and

the same moment t o can not always lead to the desired results.

Actually, this reduction assumes that the ionosphere brightness /221

distribution remains the same with zenith distance, and only the

coefficient of proportionality C depends on time. This could hold

only in the case of a rather low ionosphere height. In actuality,

the height of the ionosphere airglow layers is on the order of 300 km.

Therefore, the line of sight at a 75 ° angle to the normal intersects

the lumlnescent layer at a point which is approximately 1200 km from

the observer. Two sections of the layer which are visible at opposite

azimuths close to the horizon are separated from each other by a

distance of several thousand kilometers. If ionosphere airglow is

caused by streams of charged particles, which produce a phenomenon

which is similar to the aurora polaris, there is no basis for assuming

that such streams will be completely uniform over a very large distance.

It is known that clouds of corpuscles, which producemagnetic

storms, extend for a comparatively short distance. Direct observations

on ionosphere airglow, which were carried out by Elvey at the MacDonald

Observatory, showed that the brightness changed frequently with time in

an entirely different manner in two regions of the sky, whlch were not
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even particularly far from each other. I noted the same phenomenon

at Alma-Ata when observing Scut. luminous, Scut. dark a_d Polaris.

In several cases, a brightness change in the Polaris regie _ did not

correspond to a brightness change in the stellar cloud and the dark

lane at Scutum - which, however, changed in the same manner.

Due to this fact, it is preferable to perform observations on

nights when the uniformity of the ionosphere airglow is not signifi-

cantly disturbed, particularly when the brightness of the sky is

as constant as possible around the celestial pole.

Using the above-described method, I observed Scut. luminous,

Scut. dark and Polaris in the vicinity of Alma-Ata in the Fall

months, when the Milky Way was in the most favorable position.

Observations were performed in 1945 at the Botanical Gardens

of the Kazakh S.S.R. Academy of Sciences, in a location which was

far removed from hills and was covered with thick vegetation. In

1946, observations were performed at a mountain astronomical station

which was located i0 km south of Alma-Ata, which was much closer to

the snowy peaks of the Zaillyskiy Altai. A photometer which I had

constructed was used as the basic instrument. It had several inter-

changable surfaces which were covered with a compound having constant

luminescence and which was used as the light source.

The compound having constant luminescence was zinc sulfide,

which was activated with a radioactive substance in such a small

amount that the brightness of the compound only slightly exceeded

the densest star clouds of the Milky Way.

/222

Binocular Radioactive

Photometer

As is known, the brightness of this compound is almost entirely

independent of temperature, and also moisture (Ref. 74).
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Therefore, the use of this compoundhas several advantages over
the customary electric lamp, which is run on storage batteries and is
controlled by an ammeter. Onedrawback of luminous compoundsis their
slow luminescence with the passage of time, due to which it is neces-
sary to standardize them each week, and in any case each month. Stan-
dardization had to be employedalso in our case, in order that all of the
the observed brightnesses be expressed in the numberof stars of the
fifth magnitude per square degree.

The light from the reference surface passed through the photo-
metric wedge, which represented a gray, wedge-shapedband of colored
gelatine held by Canadabalsam between flat glass plates.

/223

No matter how carefully it is constructed, such a wedge is not

fully correct, and consequently cannot be characterized by a definite

constant. Gelatine inevitably leaks onto its narrow edge, due to which

the transmission of such a wedge- which changes, generally speaking,

A
t

Figure II

Arrangement for Studying Radioactive

Photometer Wedge

according to an exponential law - reaches a maximum close to the edge,

and then again decreases. In any case, gelatine wedges must be studied

throughout their entire length, especially under operational conditions.

It is advantageous to use a Nagel' adaptometer for this purpose; this

adaptometer is used to study the sensitivity threshold of the retina.

There is a rather large reference surface in this instrument, whose

brightness changes within wide limits with the aid of a "cat_ eye" and

several auxilllary devices. I employed other methods to study the

scale of a photometric wedge. The most convenient method, which I em-/224

ployed for the greatest number of measurements, is as follows.

The light from a small electric lamp, which runs on storage
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batteries and is controlled by a potentiometer, falls on the silver-

plated surface of a Lummer prism. This light is reflected in the

form of a thin bundle at a rightangle to the optical axis of two

nicols placed one behind the other. The first nicol N I is fixed;

the second N 2 nicol is connected with a graduated circle, which makes

it possible to determine the angle between the polarization planes

of both nlcols. The upper bundle passes through a strong converging

lens and a green Schott filter made of ground glass. This glass is

mounted in a horizontal direction. A small prism having complete

internal reflection is placed upon it; this prism deflects the light

into the collimator. A parallel bundle of light passes out through

the collimator lens; this bundle completely covers the photometer

lens with the wedge which is being studied. The brightness of the in-

coming bundle can be changed in a definite manner by turning the

nicol. The observations are carried out at different wedge settings,

which can thus be reduced in accordance with the polarization scale

throughout its length. In order to increase the aiming accuracy, the

brightest luminescent surface is used, which is 11.7 times brighter

than normal, but of the same clear green color. The color is absolutely

the same as the background of the sky during nocturnal observations,

when the normal reference surface is employed. When the wedge scale

was being studied, it was necessary to compensate for the color dif-

ference with the small lamp, using a green filter; this was necessary

due to the significant increase in the brightness of the field of

vision. Figure II shows a diagram of this arrangement.

The wedge was studied by four different persons, whose eyes were

adapted beforehand to total darkness. It was found that the manner in

which the brightness changed with the wedge can be represented by the

usual formula, within the limits of the scalar readings from 26 to 80:/225

lg J = C -- KS,

where the wedge constant K equals 0.0175, if S is expressed in milli-

meters. This corresponds to 0.438 stellar magnitudes per I cm.

Within the limits from S = 6 to 26 mm, the brightness curve fol-

lowed another course, and was represented by an additional empirical

table. Figure 12 presents the results derived from studying the

wedge (the scale readings S are plotted along the x-axes; IgJ - along

the ordinate axis).

Let us describe the optical characteristics of a radioactive

photometer designed for visual determination of the nocturnal sky bright-

ness (Figure 13). The lens is simple eyeglass, and has a diameter of

40.6 mm and a focal distance of 215mm. The ocular, which is an achro-

matic lens which has been cemented together, has a focal distance of

37 mm and a diameter of 18 mm. The ocular aperture has a diameter of

8mm, which exceeds the pupi_ of the human eye even when completely
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adapted to the dark. In this way, during observations of the sky
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Scale of Radioactive Photometer
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/225

background or of star clouds in the Milky Way, there is no loss of

light in the optics, with the exception of unavoidable absorption in

its interior and reflection from the lens surface, which does not

exceed 20% in all. The ocular lens is focused on the silver-plated

surface of the Lummer prism. This surface represents the projection

of a square, whose side equals 2 mm.

/226

The surface of constant luminescence is located in a small side

tube at a distance of 32 uln from the optical axis of the photometer,

and is bounded by a diaphragmwhich is about 8 nan in diameter. The

light from it, after being reflected from the silver-plated surface

of the Lummer prism, passes into the ocular, and forms the outgoing

bundle having a diameter which is necessarily larger than 8 mm, i.e.,

which completely covers the pupil of the observer's eye. The eye is

placed on the ocular pupil at a distance of 45 mm from the ocular

lens. The photometric wedge in its mounting is located almost in

the immediate vicinity of the Lummer prism, to the extent that this

is technically possible. The photometric wedge has a simple recording

device which makes it possible to plot the readings on the paper band

placed upon it. The observational journal is used to record only the

objects observed and the corresponding times; the readings of the re-

cording tapes are usually made on the following day. This enables the

observer to be completely objective.

The photometer is mounted on an azimuthal stand. The circle is

divided every i0 °, and the dividing lines are lined with a luminescent

substance which is clearly visible in the dark. Readings are made /227
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Figure 13

Diagram of Radioactive Phot_-

meter.

up to I °. One important problem is the standardization of the device,/227

which - as was indicated previously - must be repeated at least once

a month. Due to the significant difficulty entailed in standardizing

such faint brightness, the decision was reached to perform the measure-

ments required for this purpose everytime that it was possible.

Different standardization methods can be employed, which we shall

briefly describe below. The most direct method consists of shifting

the lens from the focus so as to obtain an extrafocal image of the

star with a surface of several square degree s • For stars of the

2 - 3rd magnitude, this image exceeds the sky background brightness by

approximately a factor of I0, and can be readil_ measured photometri-

cally employing the brightest luminescent surface. The brightness of

the adjacent sky background is determined with the aid of a regular
luminescent effective area. In order to determine the diameter of the

extrafocal image, the time required for it to pass through a fixed

point in the field of vision is recorded, using a stationary instrument;

the angle of the reference area in the Lummer prism is used as the

fixed point. For this purpose, the brightest stars must be employed -

for example, = Aquilae - which are located as close as possible to the
meridian.

Let Jl be the brightness of the extrafocal image, i.e., star plus

background, and J2 the brightness of the adiacent sky background. Let

the stellar magnitude of the star which is chosen for the stan-

dardization be m. Finally, let p be the transmission index of the at-

mosphere at the moment of observation; z - the zenith distance of the

star; m - the area of its extrafocal image expressed in square degrees.

The ratio of the star brightness to the background is

star J
= i _ 1 (20)

background j--_

The brightness of the extrafocal image of the star - as it would

appear through an absorbing atmosphere in the absence of a superposed
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sky background - in the number of stars of the fifth magnitude per

i square degree is

/228

star --2"512s'-_ psecz .
co

Consequently, the brightness of the sky background, corresponding

to the readings _ on the photometer scale, will be as follows on the
basis of formula (20):

2.5125--m pSeCZ/,

background = _ (/x--/_

This determines the brightness, expressed in absolute stellar

units, which corresponds to a specific reading on the photometric

wedge, which solves the problem which has been formulated.

This method is fairly accurate and can be readily employed, but

it assumes that the extrafocal image is completely uniform. Because

this is not the case, it is necessary tostudy the brightness distribution

throughout the extrafocal image. Let this distribution be represented

by the function f(r). The preceding considerations refer to a uniform

disc, i.e., to its mean brightness Jm

kfJ(r) rdr

Irdr

k represents the proportionality coefficient.

If the observed brightness of the extrafocal image is Jr at the

distence r from its center, we than have

)m = J, fJ(r)rdr
y(r)frar

In our case, reduction to a uniform disc comprises As = + 7.2 mm

in the photometer scale for a photometric measurement of the image

center, and only As = + 1.8 mm for a photometric measurement of its

mean section for r = 0.5 - as was usually the case in our observations./229

The significant non-uniformity of the extrafocal image is caused by

the fact that the objective consists of a simple lens in order to

avoid unnecessary losses of light.

Another standardization method, which is quite convenient to use

with photometers of any construction, employs a luminescent screen

which covers the floor of a cylindrical box.

The brightness of this screen can be measured with a photometer,

but it may be necessary to attenuate it first with a rotating disc

having a certain sectorlal sllt. If this box is covered with a lld
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having a small opening, on the order of 2 mm in diameter, it is

possible to obtain almost a point light source - an artificial

star - whose brightness will change in a manner which is inversely

proportional to the distance to the eye of the observer.

At the normal brightness of luminous compounds, it is possible

to have the brightness of the artificial star equal the reference

star of the second or third stellar magnltude when the box is at a

distance of I - 2 m.

The greenish color of the artificial star is barely discernible,

and does not prevent making valid comparisons with stars of type A.

One great disadvantage is represented by the fact that the luminescent

opening is outlined on the dark background of the lid, in contrast

to a natural star on which the rather light background of the night

sky is superimposed. In order to eliminate this difficulty, the lid

must be covered on the outside with a piece Of white paper, and if

necessary a foreign light source must be used for a short period of

illumination, so that the lid itself almost merges with the background

of the night sky in a given direction.

Let L be the brightness of the luminescent compound which covers

the floor of the box, i.e., the stream of radiation which is emitted

by a unit of surface per unit of solid angle; O the opening radius in

the floor of the box; Z - its distance from the observer, at which

the brightness of the artificial star appears the same as that of the

reference star having the magnitude m at the zenith distance z. It is

necessary to express the brightness L in the number of stars of the

fifth magnitude per i square degree.

/230

The brightness L is equal numerically to the illumination pro-

duced on a surface placed in a normal direction by an area of the

screen having dimensions of i steradian. At the distance Z, the

opening in the lid produces the illumination

In its turn, a star of the m th magnitude produces an illumination,

in the units given above, which equals

2.fi12 s - m p_z,

where p is the atmospheric transmission index (it is assumed that the

effect of the background is excluded).

Under observational conditions,

_" ___2.512 _ -. ,,, p_=z,
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from which L is found in the number of stars of the fifth magnitude

per one steradian.

Performing a calculation per square degree, we shall have

=p' \180/ "

If, for example, 0 = i mm and I = I000 ,In, then we have the

following when the brightness equals a star of the third magnitude:

6.10' 0.6
L ...... 400.

3 3600

Under these conditions, the screen brightness is approximately

one hundred times greater than the night sky, and therefore - in

order to facilitate observations with a radioactive photometer - it

is necessary to attenuate it with the aid of a rotating disc by ap-

proximately I0 - 15 times.

From these observations, we can express the scale readings S in

the number of stars of the fifth magnitude per square degree, with

which the necessary standardization is achieved. To the best of my

knowledge, this method was first employed by the student Kapteyna

Intema (Ref. 75) in 1908 when studying the brightness of the night

sky.

1231

The third standardization method is even simpler, and necessi-

tates observations without using an objective. Instead of the objec-

tive, a diaphragm is used which outlines a certain solid angle u of

the celestial vault. A star having a known brightness is observed

through the weak ocular of a photometer, and a photometric measure-

ment is made of the circle of confusion of the stellar image, as com-

pared with the surrounding sky background. In this case, we find

complete similarity with the first standardization method, while the

calculations can be carried out according to a formula of the same
form

2.8128 --m psece i,

•background /,

_----l°

However, it can be shown that this method is extremely disadvan-

tageous when applied to stars, since the contrast between the circle

of confusion and the retina and the over-all sky background will be

negligible, even in the case of bright stars.

Let us determine the radius for the circle of confusion. Let the
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ocular just touch the pupil of the eye. If F 1 is the focal distance

of the ocular and F 2 is the pupil, then the focal distance of the

conjugate lens - ocular + pupil will be

p__ FIF,
F, + F,

If we use d to designate the radius of the pupil and if it is

assumed that the distance from the retina to the pupil equals its

focal distance F2, we find the following for the radius p of the

circle of confusion:

or /232

Consequently, the angular surface of the circle of confusion
will be

_ _d 2
O)I -- • °

F,2 _.Fi _

The brightness of the circle of confusion equals the total

amount of light entering the pupil from a star and divided by the

angular surface _, i.e.,

L_a_: _-_ LF,',
• . . Fill

where L represents the illumination from the observed star having the

mth magnitude.

It can be readily seen that this brightness does not change no

matter what the position of the eye with respect to the ocular. Thus,

for example, if the pupil is located at the main focal point of the

ocular, the total amount of light entering from the star will be

L_R 2 (R - ocular radius).

The angular dimensions of the ocular lens, for a given position

of the eye, will be

and therefore the desired brightness will be, just as previously,
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Let us determine the brightness of the background. The diaphragm

outlines a section of the solid angle

ITr 2

= -_/ (r - diaphragm radius, I - tube length).

If L_ is the illumination from a unit of solid angle in the sky,
then the ocular receives the amount of light

o)I._,R 2.

All of this light penetrates the pupil of the eye, and causes

uniform illumination of the ocular, whose solid angle is

]233

_R 2

FI 2

Consequently, the brightness of the background in this case

(P < d) is

or
L_p, _.

In this case, the star/background ratio will be

L l _
..... pl<d.
L# r,r _

If, on the other hand, Pl >i d, then this ratio will be

L F,:

L,_ _d 2

It can be readily seen that this method is not very practical,

even in the case of very weak oculars. Thus, for example, in our case

F,-" 20"
G = 3.5 C_, d = 0.4 c_., _t2 , ,-.

The brightness of the night sky approximately equals 2 - 3 stars

of the fifth magnitude per I square degree, or approximately I0,000

per steradian. Therefore, even for stars of 0 magnitude,

L
-- := 0.01,

and therefore

Stellar briKhtness outside of atmosphere

brightness of sky background

_0.2.
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Thus, even in the case of very bright stars, contrast between

their image and the surrounding background is negligible. Exact

measurements are not possible.

_234

In the case of a photometer which is designed as described above,

such a method is not applicable for fundamental reasons. Actually,

this method entails the significant assumption that all of the light

from the sky background, which is outlined by the diaphragm, enters

the pupil (O < d), as occurs with the light from the reference star.

If this is not the case - i.e., if O > d - then the brightness

of the sky background will of necessity depend on the size of the

pupil, and the brightness of the stellar image will be independent of

it. Therefore, the variability of the pupil is not excluded, and

photometric measurements are impossible.

If the condition p < d holds, and is not restricted by the loss

of light, then this will not correspond to our photometer design, in

which the exit pupils of both the objective and of the reference

source considerably exceed the pupil of the eye dimensions.

The last standardization method of our photometer was employed by

A. A. Kalinyak, but it did not lead to any results for the reason

given above.

I prefer to use the first standardization method - the method of

extrafocal images. As a result, it was possible to derive an absolute

scale of the radioactive photometer for each observational period.

Thus, for example, in October, 1945, the brightness in 2.14 of our units

corresponded to a scale reading of S = 40; and at the beginning of

July, 1946 - 1.74. This change is very small. It must be noted, however,

that the area with the continuously-active compound, which was used in

the photometer, was stored for several years.

Let us now turn to the problem of dividing the components of night

sky airglow. The observations in October, 1945, were performed during

completely clear weather, but after a long period of drought - when the

lower layers of the earth's atmosphere produced enormous solar coronas

and the sun, approaching the horizon, became almost invisible. Apparent-

ly, the atmospheric transmission, which could not be great during the /235

day, constantly increased at night. This could be determined, for example,

by the rising of the crescent moon in the pre-dawn hours. First, the

dark portion of the lunar disc appeared above the mountain tops, slight-

ly illuminated by earthlight, and then the bright crescent appeared.

This indicated great transmission of the air above the mountain tops,

and an over-all improvement of the atmospheric conditions as compared
with diurnal conditions.

We should point out that large solar coronas do not necessarily

indicate poor transmission, which depends on the over-all size of the
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Figure 14

Observations on October 3, 1945.

scattering indicatrlx. One characteristic property of Central Asia

is good visibility away from the sun, but poor visibility toward the

sun.

]236

We can find the transmission index p primarily from observations

of Sent. luminous, Scut. dark and Polaris.

Figure 14 presents observations which were carried out on Octo-

ber 3, 1945.

The working hours are plotted along the abcissa axis ( their

correction was 8m45s), and the scale readings of thephotometer in

millimeters are plotted along the ordinate axis. The Sent. luminous

region represented the brightest and most uniform stellar field

(a = 18h 50m, 6 = - 7°), which could be readily found by the configura-

tion of telescopic stars.

Scut. dark (a ffi18h 40m, 6 = - 6°) was observed in the darkest

portion of the lane to the west of the first object.

The following system of equations is given below:

lg (i,--).,) + sec z lgp =_g (J,-- J2).
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3Ore.
The coefficients were read off along the averaged curves every

lg (/,--/2) _-1.662 Igp::0.2304
i.788 0.I987
1.982 0.1847

2.265 0.1644
2.693 0.1038
3.440 0.0414
4.856 --0.0506

We thus have the normal equations

7 Ig(/1--/..)_-18.686 Igp-_0_8728
18.686 lg(/x--i..)-+-57.6_;9 Igp-----1.6529

Their solution yields

j_-- j2=0.356; Igp =-- 0.0866
and, consequently,

p =0.82..

The solution is primarily determined by points which are close

to the horizon, where there can always be some doubt with respect to

the uniformity of the atmosphere. Discarding the last conditional

equation, we find

p =0,78.

If, on the other hand, we discard the first equation, retaining all

of the others, we then have

p =:0.824..
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Performing a graphic solution, in which the relative importance

of the individual observations is distributed in the best manner, we
find

p=0.813.

We can finally assume that p = 0.82. If this value for the atmos-

pheric transmission accurately satisfies the conditional equations,

then observations on either the light stellar cloud, or on the dark

lane, can be equally employed when dividing the components. The condi-

tional equations for dividing the components have the following form:

] 0.720-_-C 1.176=1.89 / 0.587q-C 1.383=1.93
0.702 1.218=1.89 0.506 1.3q8=1.89
0.675 1.274=1.94 0.382 1.253=1.96
0.639 1.333=1.93

It was thus assumed that h = 0.05. The atmospheric component

is representedby the usual expression
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c 0 + h) (p + o.o3) _¢"

Y(l -F h) _ sin2z

The small change in the sky brightness around the pole was not

taken into account. On the average, the solution yields

C = 0.95,

from which it follows that the atmospheric component for the pole

(z = 47 °) will be 1.045.

Since, in reality, the observed brightness around the pole is

about 1.30, and the stellar component in the same region is 0.37,

we can see that nothing remains for the portion of zodiacal light.
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There is no doubt that the transmission index along the Milky

Way was too small for the nights of October 6 and 7 - namely, 0.79

and 0.74. This leads to an excessively large value for the atmos-

pheric component around the pole, which exceeds the entire observed

quantity. If an increased transmission value of p = 0.82 is used for

these days, which is identical with that of October 3, then we obtain

much more reasonable results. However, in this case there is no

zodiacal light around the celestial pole. The results can be im-

proved with a more rigorous treatment - for example, by taking

galactic diffused light into account. However, there is no doubt

that their nature remalnsunchanged.

Observations in 1945 were not entirely reliable, due to mediocre

atmospheric conditions and due to the fact that the transmission

probably varied during the night.

In 1946, the atmospheric conditions were incomparably better.

There was rain for a large portion of the year, with small intervals

of dry, clear weather. In addition, the observations were performed
in the mountainous area of the Institute of Astronomy and Physics

of the Kazakh SSR Academy of Sciences, at an altitude of 1350 m -

i.e., at approximately 600 m above the observational area in 1945.

Observations on the same regions of the Milky Way -Scut. luminous,

Scut. dark and the region around the celestial pole - were carried

out in August, 1946, usually beginning with the most southerly po-

sition of Scutum and proceeding almost up to its setting. It was

usually found that the brightness of the stellar cloud slowly In-

creased as the zenith distance increased, or remained approximately

constant, reached a certain maximum, after which it began to

rapidly decrease. For the dark lane of Scut. dark, this brightness in-

crease with zenith distance was always expressed very clearly. This

indicates the existence of a luminescent atmospheric veil, whose

intensity follows the formula CF(z)(p + 0.03) sec z according to our

theory.
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If both areas -bright and dark -were observed simultaneously

throughout the entire night at the same zenith distance,-then the

atmospheric airglow would be entirely eliminated when comparing the
difference J1 - J2, independently of its fluctuations with time. In

our case, both areas were observed at different z, due to an increase

in the parallel inclination. We can derive the mean curves on the

basis of all the observations, and can record the photometer readings

S I, S2 which pertain to the same zenith distance, but to somewhat

different moments in time. This fact, however, is not of great
importance.

The determination of p, which is carried out according to the
formula

is given in the following Table:

1946

7 - 8 August

23 - 24 August

24 - 25 August

25 - 26 August

31, Aug. - I, September

i - 2 September

P

0.78

0.82

0.74

0.81

0.81

0.84

• Comments

August 8, morning, completely
clear.

Cloudy horizon in west & north.

Clear; hazy zone in north.

These results were obtained graphically by drawing lines which best

represented the coordinates y = Ig(J 1 - J2) and x ffisec z, or more pre-

cisely the atmospheric masses m z. These atmospheric masses, which repre-

sented an increase in optical thickness with zenith distance, can be

calculated with a fair amount of accuracy by means of the series:

m.=secz(l-kho) LseOz(2/to+ 6hg-- 6ho3)'--[-
2

3 5 2 3
+ _-sec z (8ho+48ho q-120/!_ q-12Ohm)--{- .... ,

/240

where h 0 designates the height of the uniform atmosphere; it is assumed

that the radius of the terrestrial sphere equals unity. In the case of

a purely gas atmosphere, whose structure is determined by a barometric

formula, h 0 is very close to 8 km. The unlformheight of a real atmos-

phere, whose absorption is determined to a significant extent by aero-

sols also, must be smaller, since aerosols are connected with lower

layers. If h 0 = 0, then we have

//Z z: Se CZ,
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and this must be a good appropriation in the general case, up to

z = 75 °.

The values of p, determined for the Milky Way, cannot he regar-

ded as real. There is no doubt that the large atmospheric transmission

to the south, over snowy mountain peaks, causes a fictitious decreased

value for the transmission index.

Let the transmission index Pl correspond to the zenith distance

Zl, and the quantity P2 correspond to z2. As a result of a change in

the azimuth, we find that

zl<z2, but PI_P_-

Let the observed brightnesses of a star be Jl and J2, so that

J1 = Jo p,_oczl; J2 :Jo p,secz.

where J0 is the brightness of the star at the boundary of the atmosphere.

Employing the customary computational procedure, we find p accor-

ding to the formula

lg p __/gJ_-- lgJz ___secz, IgpL_ secz, lgp,
scczl--seczl seczt--secz,

or

Igp --: Igpl-- (Igpt-- lgp2)
SPCZ,

secz2--seczl (21)

If, for example, for sec zI = i, Pl = 0.85 and for sec z2 = 4, ]241

P2 = 0.84, then - assuming that p is constant, as is usually done

when analyzing observations - we find the following according to (21):

p =0.83,

i.e., a fictitiously decreased value.

Thus, thedecrease in the atmospheric transmission toward the

west, where the effect of the desert comes into operation, can actually

be of importance. In addition to this, the presence of local haze

in the west, which is frequently observed over deserts, can have an

effect also.

A criterion can be formulated for the validity of these conclu-

sions. If the transmission index is fictitiously small, then the

difference (Jl - J2)0 outside of the earth's atmosphere must be too

large. In actuality, we have:
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7- 8 August

23 - 24 August

24 - 25 August

25 - 26 August

31, Aug. - 1 September

I - 2 September

z = 70 °
I!

I!

II

II

II

Jl - J2

1.49

1.27

1.20

1.55

1.46

1.44

P

0.78

0.82

0.74

0.81

0.81

0.84

(Jl - J9)*O

3.06

2.26

2.88
2.86

2.69

2.38

It can thus be seen that the smallest value (J1 - J2)0 outside of

the atmosphere was obtained on the clearest night on September I - 2,

while on nights which were not clear (p = 0.74 and 0.78) the largest
values were obtained.

Due to this fact, we shall now use somewhat larger values of atmos-

pheric transmission on the order of 0.85 - 0.86. This is in agreement

with the determinations of p using a halo photometer which I constructed;

these determinations were made in the same area in the early morning

hours, beginning with sunrise. Thus, much larger transmissions were 1244

invariably obtained, on the order of 0.85, which are characteristic

in general for this locality for visual rays.

Table 33 presents observational data on the days indicated, de-
rived from smoothed-out curves. The individual observations are

presented in the adjoining graph.

We should note that the readings of the photometer scale SI, $2,

$3, were usually made in rapid succession. The corresponding

brlghtnesses Jl, J2, J3 are expressed in the number of stars of the

fifth magnitude per square degree. A reduction for the galactic

light, scattered in the troposphere, is given in the last column.

This correction is on the order of 0.I in our units; it changes

very little with zenith distance, and is of no significant importance.

It can be demonstrated that reduction for zodiacal light, which is

scattered in the troposphere, can be completely disregarded without
any effect.

/245

Let us first examine the observations on August 25 - 26, 1946,

which were performed under very good conditions. Judging by the

uniformity of J3, we can assume that the state of the ionosphere was

stable. Introducing a correction for scattered galactic light, we

can find the following system of conditional equations for p = 0.81,

determined for the Milky Way (based on the determinations of Dewar

and Karimov, it is assumed that the height of the ionosphere layer

* Note: Original foreign text gives Jg; correct term should be J2"
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August 23 - 24, 1946
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August 24 - 25, 1946

Figure 15

Observations on August 23 - 24 and 24 -

25, 1946.
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is 0.046) :

z=50 ° C 1.123--_] 0.0721=4.I9

55 1.192 0.693:4.23

60 1.266 0.656 =4.28

65 I. 336 0.608 -= 4.24

70 1 " :B 0.540 =-=4.12

72 1.383 0.506:4.04

74 1.370 0.466 -----3.97
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TABLE 33

lumin, dar_ z sec z po| J, Ji Ja tcd

Sl

25.0

25.7

26.8

27.8

29.0

30.4

27.5

27.6

27.8

28.0

28.3

28.4

28.5

28.0

26.2

25.8

26.0

27.0

27.8

29.0

24.7

24.4

24.0

24.2

24.8

25.3

25.7

I

35:8

35.8

35.8

35.9

36.2

36.4

70 °

72

74

76

78

8O

2.92

3.24

3.63

4.13
4.81

5.76

S_

7--8 Aug. 19t6

49.6

48.7

43.4

48.3

48.5

48.8

4.22

4.11

3.93

3.78

3.60

3.40

2.73

2.73

2.73

2.71

2.68

2.66

1.58

1.62

1.64
1.65 {

1.63

1.61

0.13

0.15

0:16

0.17
0.18

0.20

42.3

42.0
41.2

39.7

38.7

38.2

37.8

50 °

55

6b

65

7O

72

74

23--24 Aug. 1946

1.56

1.74
2.00

2.37

2.92

3.24

3.63

51.0 3.82 2.10
60.9 3.81 2.12

50.81 3.78 2.20

50.8 3.75 2.34

50.7 3.71 2.44

50.7 3.69 2.48

50.7 3,68 2.52

1.47

1.43

1.48

1.48

1.49

1.49

1.49

0.07
0.08

0.09

0.10

0.12

0.13

0.14

43.2

39.0

37.4

36.3

36.0

36.0

36.1

50 °

55

60

65

70

72

74

24--25 Aug. 1946

1.66

1.74
2.OO

2.37

2.92

3.24

3.63

49.3

47.0

45.0

44.2

44.7

45.4

46.0

3.75

4.03

4.09

4.06

3.90

3.78

3.60

2.03 1.58

2.41 1.74

2.56 1.89

2.67 1.95

2.70 1.91

2.70 1.86

2.69 1.81

0,09

0.10_

0.11!

0.13

0.15

0.16

0.17

40.5 50 °

39.4 55

38.1 60

37.0 65

36.0 70

35.7 72

35.4 74

25--26 Aug. 1946

1.56 46.0

1.74 44.8

2.O0 44.7

2.37 44.8

2.92 45.0

3.24 45.0

3.63 44.8

4.27 2.26 1.81

4.32 2.37 1.91

,t.38 2.49 I 1.91

4.35 2.60 1.91

4.25 2.70 1.39

4.17 2.74 1.89

4.11 2.78 1.91

0.08

0.09

0.10

0.11
0.13

0.13

0.14

p=:0.78

p=0.8

p:0.81
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(continued on next page)
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Table 33 (continuation)

scut I I Ilumin, dar_ z seez pol y,

S_

26.2

26.8

27.2

27.7

28.6

,.0

27.5

27.1

27.5

27.8

28.3

29.0

30.0

82

39.4 I 65' _ "!.37

38.3 [ 70 _,.92

37.9 I 72 3.2.t

37.7 [ 74 3:63

37.9 [ 76 4.17,

33.4 [ 78 ,1.81 ]

39.0 I 80 5.76 I

40.5

40/4

39.3

39. I

38.9
38.9

39.0

3 3

31 Aug.- i Sept. 1946

60

65

70

72

74

76

78

46.7
47.4

47.7

47.8

47.7

47.6

,t7.2

4.03

3,93

3.87

3.79

3.66

3.45

3.18

I--2 Sept. 1946

2. O0

2.37

2.92

3.2,[-

3.63

4.13

,1-.81

2.37 I 1.76

2.47 I 1.71

2.51 I 1.69

2.53 1.68
2.51 1.69

2.46 11.702.,[.1 1.73

9.4 3.82 2.26

50.0 3.89 2.27

50.0 3.82 2.38

_0.0 3.78 2.40

50.0 3.71 2.42

50.0 3.60 2.42

50.0 3.45 2.41

0.11

0.13

0.13

O. 14

0.16
0.17

0.18

1.58 0.09

! .54 0.10
1.5.1 [ 0.12

1.54 0.13
1.54 0.14

1.54 0.15

1.54 0.16

p--0.81

p:0.84
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A solution of these equations which employs the Cauchy method

yields the following:

C = 1.85; j--_ 3.00"

We thus find that the ionosphere component around Polaris is

J245

1.85 . 1.084- 2.01.

The total brightness of the sky observed in the same region is

only 1.91 in all. Thus, nothing remains for the portion of galactic

and zodiacal components. This again demonstrates the illusory

nature of the value obtained for p. Actually, if these calculations

are repeated for successive p of different magnitudes, we then ob-

tain the following: TABLE 34

3.0 1.85

3.2 1.635

3.3 1.49

3.4 1.36

3.6 1.19

25 - 26 AUGUST_ 1946

Reduction

for pole

0.81

0.82

0.83

0.84

0.85

i .084

1.104

1.126

1.145

1.167

Galactic

component

around the

pole

0.37

0.37

0.37

0.38

0.38

Observed

bright-

ness at

the pole

1.91

1.91

i .91

1.91

i .91

Zodiacal

component

-0.47

-0.26

I -0.14-0.03

I 0.14
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It can thus be seen that the results depend to a significant

extent upon the assumed value of atmospheric transmission. The

atmospheric component of the night sky luminosity decreases with

an increase in p. A plausible value for C is obtained only for

the maximum assumed value of p, which is generally characteristic

for the point of observation. However, in the latter case the zo-

dlacal component around the pole is very small, if it occurs at
all.

Let us examine several other days. On the night of August 23,

24, the brightness around Polaris was almost constant. Assuming

that p ffi0.84 and 0.85, we can calculate the following values for

the components :

TABLE 35

P

0.84

0.85

C

I I.I00.97

l

3.2

3.3

Ionosphere

component

at the pole

1.26

1.13

Galactic

component

at the pole

0.38

0.38

Observed

brightness

at the pole

1.48

1.48

Zodiacal

component
at the

pole

Thus, the zodiacal component at the pole can be positive, although

it may be a very small quantity, only for a value of p which exceeds
0.85.

Observations on August 24 - 25, encountered special dlfficultles,]247

since the brightness of the sky around the pole regularly increased

during the first half of the night. At sunrise, extensive light

clrro-stratus clouds appeared around the northern and eastern horizon.

If a correction is introduced for the ionosphere brightness change

according to the formula given above and if it is assumed that p=0.85,

we then find

C=1.02; ]==3.7; mean J3__1.90.

The zodiacal component at the pole is 0.15.

If a reduction is not made for the ionosphere brightness change,

then for p = 0.85 the zodiacal component increases considerably.

On the other hand, for p ffi0.74 which is determined for the

Milky Way, this component assumes a large negative value which is

impossible.
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Observations on SeptemberI - 2 were performed under very good
atmospheric conditions, but were initiated comparatively later due
to the presence of a young moon. The brightness around the pole re-
mainedapproximately constant. For p = 0.85, we find

C=1.167; j-----3.0.

For the ionosphere component around the pole, we find

1.16. 1.167 = 1.354.

The over-all observed brightness in this region is 1.54.

Consequently, the zodiacal component is 0.19. If it is assumed

that p = 0.87 according to the determinations of Ye. V. Fesenkov

(halo photometer), we find

C=0.93; j=3.20.

For the pole, we have the ionosphere airglow

0.93. 1.207== 1.123,

from which a zodiacal component is found of 0.04.

Observations on 31, August - I, September, 1946 were initiated

later due to the presence of the moon. The sky background around

Polaris changed with time, but not to the extent that it did on

August 24 - 25. If a mean value of p = 0.85 is assumed, we then find

j_3.3; C-- I.II;

The observed brightness around Polaris is 1.69, and the ionos-

phere component is

1.11 • 1.167--_ 1.30.

Adding the galactic component of 0.38, we find that only 0.01

remains for the portion of zodiacal light - i.e., practically

nothing. If, on the other hand, it is assumed that p = 0.87, then

we find a significantly larger value of 0.54.

An analogous conclusion is reached from a discussion of the ob-

servations on August 7 - 8, 1946. For p = 0 85, we have

C=I.14 and j=3.6.

The zodiacal component at the pole is (J3 = 1.63)

Ja--l.14-1.167--0.38.=--0.08_0.

For p = 0.87, we find

C_0.56; j-----4.7.

J248
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The zodiacal component equals 0.57.

Such a large change depends on the fact that the observations

employed pertain to large zenith distances. It is also apparent

that an exact determination of the zodiacal component is only possible

with an exact knowledge of atmospheric transmission. Particular

attention must be given to this point. The best method employs exact

photometric methods to compare the brightnesses of stars at large
zenith distances with stars close to the zenith. Even visual ob-

servations of the bright stars as they rise and set, employing the

well-known method of Pickering, can provide satisfactory results,

if the uniformity of the optical atmospheric properties are taken

into account, especially in the horizontal direction.

A very reliable method for determining p is the photoelectric

measurement of solar radiation through a green filter in the early

morning hours, when the atmosphere still retains its nocturnal trans-

mission. Such measurements can easily provide an accuracy of up to

0.1%. Ye. V. Fesenkov also developed a method for observing the

maximum of the solar corona, yielding results which closely corres-

ponded to the classical method of Bouguer. The results obtained by

this new method pertain to one moment in time, and therefore do not

entail a condition of atmospheric transmission uniformity.

Due to the unreliability of the value for p, it is not possible

to make a fully reliable determination of the zodiacal component

around the pole. If we assume the value p = 0.85, then we find the

following values for the zodiacal component in the region of the

pole:

7 - 8 August ...............

23 - 24 August ...............

24 - 25 August ...............

25 - 26 August ...............

31, Aug. - i, September ............

I - 2 September ...............
Mean .....

- 0.08

- 0.03

0.15

0.14

0.01

- 0.19

0.00

However, this result is not probable, since the observer (it can be

said with certainty) is located in the medium itself of zodiacal

matter, and therefore zodiacal light must be propagated throughout

the celestial vault. Due to the lack of exact nocturnal determina-

tions, one can start with the general characteristics of atmospheric

transmission during the morning hours, based on the transmiss£'on

indices determined with a halo photometer from August 24 to September

5, 1946. The values of p fluctuated from 0.85 to 0.87. If we assume

0.86 on the average, then the zodiacal component yields almost

]249

/25O

203



exactly 0.2 at the pole.

This value, which cannot be increased, directly contradicts

the results of Van Rhljn (Ref. 76), who found that the zodiacal

light comprises 43% of the total night sky brightness.

A knowledge of the zodiacal component at the celestial

pole affords a very slight possibility of determining the absolute

ionosphere airglow at any time during the night. If a photometer

is used whose scale makes it possible to read off the brightness

in the number of stars of the fifth magnitude per square degree,

it Is only necessary to measure the brightness of the sky close to

the pole and to subtract 0.38, as well as the zodiacal component.

The difference represents the ionosphere airglow J0, taking into

account diffused troposphere light. The atmospheric component

J at any other region in the sky will be

f

J = Jo (P "3c 0.03) secz--seez°] / (1 4- h)'-- sin'zo
• _/ (1 -3r- h)'--sin'z

If this region is not too close to the galactic plane, a calcula-

tion may be made for it, or the total stellar brightness can be taken

from the appropriate tables, followed by a correction for stellar

light scattered in the troposphere.

As a result, a complete photometric analysis may be made of

night airglow, which is applicable to any problem whatsoever.
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CHAPTER 15

Photometric Observations of Zodiacal

Light and Their Interpretation

In spite of its great brightness, zodiacal light is barely under- /251

stood even by astronomy specialists. This can be explained, no doubt,

by the fact that this phenomenon does not have any specific contours

and develops only slowly and gradually throughout the night. It is

most readily visible only for a brief period of time before sunrise or

immediately after twilight. Nevertheless, the attentive observer can

discover clear traces of zodiacal light at any time during the night

when there is no moon or any foreign lights• Thus, for example, at

the beginning _f autumn during the early hours of the night, the western

portion of the sky appears just as bright as does the eastern portion.

However, a light spot can be distinguished in the north-western portion,

which appears to be slightly raised above the horizon and which gradually

moves to the north, following the motion of the sun. This is the so-

called Northern Zodiacal Light, which combines its eastern and western

cone. During the summer solstice, this nbrthern zodiacal light is very

clear, and extends throughout the entire northern portion of the sky,

virtually up to the celestial pole.

In addition, an extensive zodiacal zone can be seen in the southern

portion of the sky - faint diffused luminosity, which extends along the

ecliptic and which can be readily observed at a certain distance from

the Milky Way. This phenomenon can always be seen under favorable con-

ditions, when the ecliptic passes fairly high above the horizon and

there is no interference of the Milky Way. If this is not the case,

the observer cannot distinguish any contrast with the surrounding sky

background•

/252

Under the same conditions and at a point opposite the sun, one

can observe a turbid spot having an oval shape, the so-called counter-

glow. Photometric observations of the counterglow are extremely diffi-

cult, since this phenomenon is very small• Sandig obtained more or less

successful photographs of it in Equatorial Africa using a fast Leica

camera (Ref. 77).

In my opinion, usually in the autumn months, when the point oppo-

site the sun is located at the Aries-Pisces, the counterglow has a

much sharper outline, an oval form, is extended along the ecliptic,

and does not exceed 5 - 6°. On the other hand, during early spring

in another period which is favorable for observing this phenomenon, it

appears in the form of a spot which is barely distinguishable having
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an indefinite circular form, whose diameter can be guessed - rather

than dete_nined - as being on the order of 10 - 15 ° .

After midnight, the sky begins to lighten considerably in the

east, while the west remains dark as usual. This airglow has a

diffused nature at first, and the impression is received that it

encompasses the entire eastern horizon. This corresponds to the so..

called diffuse light, according to the terminology employed by

Serpierl (Ref. 78). However, after only 2 hours of the night in

solar time, the outlines of an extensive cone of zodiacal light

begin to stand out in the east; this light is inclined toward the

horizon and expands and intensifies considerably as it approaches

the sun. Shortly before dawn the brightness of the zodiacal light

increases every minute. Finally, a narrow band of twilight appears,

which spreads along the horizon, in contrast to the zodiacal light

which rises sharply. Following this, the sky begins to lighten,

and the approaching dawn conceals the outllne of the zodiacal light

and all the cosmic objects.

We would llke to point out that the outer form of the zodiacal

light, its "contour" which is usually drawn by observers, corresponds

to the geometric location of points having maximum contrast. It

appears that this phenomenon represents a system of isophotes which

make it possible to determine the brightness J at any point in the

sky. In this case, we can write the equation for the line of greatest

contrast in the form

while the derivative is taken along the normal to the isophote.

•e •ee

October 4, 1945

Figure 16

Apparent Contour of Zodiacal

Light.
2O6
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appropriate calculations are performed, it is then found that in the
case of zodiacal light the apparent contour is muchmore elongated
than the isophotes. Generally speaking, the form of this phenomenon
dependson several factors - mainly on atmospheric absorption and on
the superposition of the atmospheric and galactic components,which
behave differently. The eye of the observer traces what appears to
him to be the light patterns of the point of greatest contrast, and
combines them into one contour. Figure 16 illustrates the outline
of zodiacal light in the eastern sky on the night of October 3 - 4,
1945. The lines of greatest brightness are shifted considerably to
the north with respect to the ecliptic. The zodiacal light is great-
ly elongated toward the north in its portions which are close to the
horizon, but contracts upward. Whenthe ecliptic is in a different
position, the nature of the phenomenonchanges. There is nothing
remarkable in the fact that the apparent outlines of the zodiacal
light are variable. Visual observations of this phenomenon,with
which the scientific literature of the 19th and 20th Centuries
abounds,cannot therefore be of any scientific significance.

/254

Zodiacal light must be studied by accurate methods of absolute

photometry, which make it possible to express the observed bright-
nesses in a stellar scale. Observations must be corrected for the

atmospheric and galactic components. A difficulty is encountered,

however, in the uncertainty with which they cau be determined. Our

theory for the illumination of the night sky includes: h - height

of the effective ionosphere layer; p - transmission index; L(b) -

total stellar brightness at different galactic latitudes; and

finally, Bf(O) - the scattering indicatrix which determines the

nature and intensity of additional airglow in the troposphere. The

quantities h, p, _f(O) apparently change from day to day. It is

difficult to determine them for each night, and we must therefore

confine ourselves to mean values. This is valid for h and _f(O),

but the transmission index p must be determined accurately, within

at least 1%. We have a very inaccurate knowledge of the function

L(b). Actually, this function is determined by numerical integration

of stellar brightness between the 7th and 20th stellar magnitudes on

the basis of computations of the number of stars in each interval

of photographic stellar magnitudes. In addition, the total stellar

brightness must be extrapolated from the 20th magnitude up to infinity,

and this extrapolation is absolutely unreliable for very low galactic

latitudes. The disagreement between these calculations, based on

data given by Scares and Van Rhijn, amounts to 100% of the Milky Way,

with good agreement at a sufficient distance from it (Ref. 79). There-

fore, in general it is not possible to determine the brightness of

the galactic component in the Milky Way itself. The inaccuracy of

L(b) determined outside of the Milky Way depends on the necessity of

introducing a correction for the color index, in order to change from

photographic to_photovisual total brightness. This represents a very
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serious source of errors.

Thus, for example, according to my calculations for a galactic J255

latitude of 15 ° the total stellar brightness from the 7th to the 20th

magnitude is 0.54 in photographic rays, and in visual rays with the

color index of Scares it equals 1.08 - i.e., exactly two times larger.
It thus follows that a small error in the distribution of the color

indices can change the quantity L(b) to a significant extent. In ad-

dition, the nonuniformlty of the stellar distribution with respect to

longitude has a certain effect.

This nonuniformlty is not of great importance. Actually, if the

deviation from the mean distribution of a number of stars, according

to data given by Seares (Ref. 80) is taken into account, the maximum

difference in the total brightness is no more than 25%.

For example, the total brightness in photographic rays from the "

7th to the 21st stellar magnitude in the galactic plane is 0.91 for

the mean stellar distribution. If the same calculations are performed,

taking into account the data given by Scares, for the region of the

dark lane in the Aquila constellation, we find a decrease in the total

brightness, equaling 0.23. Approximately the same proportion is

retained in photovlsual rays.

Due to this fact, observations of the zodiacal light close to

the Milky Way cannot lead to reliable results. It is extremely

desirable to determine in advance the integral brightness of the

galaxy close to the Milky Way, when the influence of zodiacal light

cannot be perceived.

The best method for observing the eastern or western zodiacal

cone consists of drawing its photometric cross-sectlons at one and

the same zenith distance, equaling approximately 75 ° and, in any

case, not exceeding 80 ° . The observations are initiated beforehand,

when the given region in the sky is located at a distance of about

90 ° from the sun with respect to the ecliptic. As the cone rises due

to daily rotation, the brightness determinatiorsof the sky are con-

tinued along this fixed almucantar, encompassing with respect to the

azimuth not less than 150 ° in the region of the ecliptic through each 1256

I0 °, and at a large distance from it through 20 and 30 °• As a result,

several zodiacal light cross-sectlons are obtained, which correspond

to the same values of the atmospheric component. At the beginning

and at the termination of each series, the sky brightness is determined

around Polaris, which serves to separate the absolute value of

atmospheric airglow and to control its uniformity during the night.

However, in order to accelerate the operation one must usually take

cross-sectlons which are higher with respect to the almucantar,

gradually lowering them to the horizon, and the work must be carried

out under this method only in the last hours before dawn. The
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evening zodiacal cone can be observed in reverse order.

Such an observational method provides a great savings in pro-

cessing time. Actually, in order to calculate the corrections

given above it is necessary to compute the coordinates in all the

systems for each point in the sky at which the total brightness is

observed - namely, altitude and azimuth, hour angle, right ascension

and declination, celestial longitude and latitude. The final values

of the zodiacal light brightness, which do not include the atmos-

pheric and galactic components, pertain tO the coordinate system as

a function of the celestial latitude and difference in longitude

with respect to the sun. Isophotes are drawn along the plotted

points, and thus the actual form of the phenomenon can be determined.

By way of an example, we shall present the reduction of observations

during several days in 1945 and 1946.

The mean brightness of the sky around Polaris was as follows.

3 - 4 Oct., 1945 1.43 15 - 16 Oct., 1945 1.53

4 - 5 " 1.49 i Sept., 1946 1.55

6 - 7 " 1.46 3 " 1.45

7 - 8 " 1.49 5 " 1.60

9 - i0 " 1.53 6 " 1.64

14 - 15 " 1.46 8 " 1.42

Calculating the stellar component with a correction for the

light scattered in the troposphere, we can find the ionosphere airglow

C O close to the pole.

Multiplying the quantity C O by the factor /257

:(z, p) = @ + .....
I/ (1 -l- "1)_ -" ,_in_"=

we can find the ionosphere component for any zenith distance, in

particular for all z at which the zodiacal light was observed. In

1945, the transmission index on a plain after a long drought was

assumed to be 0.80, on the average. In 1946, under mountainous con-

ditions after rains had passed over, the transmission was considerably

larger and equalled 0.85 - 0.86.

The difference in the factor F as a function of p is apparent

only at large zenith distances. Thus, for example, for values of

p equaling 0,819 and 0.861 we have the following values of F:
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TABLE 36

i

z (5' [ 50 °
Ii

I

F .... 0.93 [ !.0|

1," .... 0.98 t 1.04
I

55 ° 60 °

.08 1.17

.06 1.14

6,5' J 70° I 75° 8_)°

1.25 [ 1.29 1.29 11.10
1.19 1.21 I 1.14 0.89

I

!
P

I

0.819[

0.8611
I

After introducing a correction for the ionosphere, we introduce

another correction for the total stellar brightness. As was indicated

above, this correction is assumed in the form

secz ( i )L(b)p + 0.355 _(z,z)sec z i - _ sin2b •

The first term designates the total stellar brightness caused by

atmospheric absorption; the second term designates the correction for

scattering of the same light in the troposphere. Auxilliary tables

for determining the latter term for different p were given above. When

these tables were derived, a stellar distribution was assumed which

depended only on the galactic latitude and which was the same over all

longitudes. In addition, it was assumed that the galactic plane passed

through the zenith. This term always remains small, with the exception /258

TABLE 37

I

O' 0.01

0 _ 0.05
!

':0' [ 0.05
3O_ 0.05
40' O. 06

50' 0.07
60 o 0.0_

70 ° 0.11

_0' 0.18 i

0.0t

0.05

0.05

0.05

0.06
0.07

0.08

0.11

0.18

O.Ot

0.05

0.05

0.05

0.06

0.07 :

o.o8 l
0.11

0.18

0.04

0.0t

0.05

0.05

0.06

0.06

0.0_

0.11

0.17

0.01

0.01

0.05

0.05

0.05

0.06

0.07

0.10

0.t6

50' 60 _

0.0-I 0.01

O.O-t 0.61

0.04 0.0t

0.05 0.0_

0.05 0.05

0.06 [ 0.05

0.07 I 0.07

0.10 0.09

0.16 0.15

O. 04

O. 61

0.04

0.04

0.05

0.05

O. 06

0.09

0.14

0.03

0.04

0.0!

0.04

0.05

0.05

0.06

0.09
0.14

0.03

0.04

0.04

0.04

O.Ot

0.05

0.06

0.0_

0.14

of only very large zenith distances, at which the observations have

no meaning. Thus, for example, for p = 0.85 we have the values in

Table 37. The final reduction for the total stellar brightness, taking

into account both terms in the expression given above, is as follows

for p = 0.85.

It is interesting to note that at large galactic latitudes a de-

crease in the first term is almost exactly compensated by an increase

in the second, so that on the whole the galactic correction remains
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TABLE 38

IO" 20 ° 30 ° 70 ° SO° 90 °Z _ 0°

0 ° 1.68

10°! 1.67

20 ° 1.66

30' 1.64

40 ° 1.59

50 ° 1. %

_5 ° l.g3

60 _ 1.47

6_° I 1..11

70° I 1.31
75 ° 1.17

180 ° 0.95

1.21

1.22

1.21

1.19

1.16

1.1t

1.12

1.08

1.04

0.97

0.88

O. 74

o. 5
0.o6

0.85

0.84

0.82

0.81

0.80

0.7/

0.75

0.70

0.65

0.56

5.58

3.58

3.59

3.58

).57

).56
).5o

).54
).63

).51

}.48

). 43

40 ° 5r) _ 60"

).41 0.30 0.24

).40 0.29 0.24

).41 0.29 0.24

).41 0.30 0.24

L39 0.29 0.24

L39 0.29 0.24

L39 0.29 I 0.2't

,38 02910.26
_.38 I 0.28 I 0.26
1.37 9.29 ] 0.25

!

_.35 9.-8 [ 0.24
I

P.33 3.28 I 0.24

t

0.23

0.23

0.23

0.22

0.23

0.22

0.23

0.2._

0.23

0'23

0.23

0.23

0.21

0.21

0.21

0.22

0.22

0.22

0.21 i

0.21

0.21
0.22

0.'2

0.22

0.21

0.22

0.22 I

0.21

0.21

0.;-2

0.21

0.21

0.21

0.21

0.22

0.22

]258

unchanged. On the other hand, close to the galactic latitude this

correction is considerable, and is therefore unreliable. Local ab-

sorption in individual cosmic clouds can considerably change its

magnitude. By way of an example, let us consider the region in the

sky around Polaris. According to our Table, the galactic reduction

for z = 47 °, b = 30 ° comprises 0.56, while 0.38 should be assumed.

This difference is due to the presence of considerable light absorp-

tion in cosmic clouds blanketing the celestial pole region. For

the morning cone of zodiacal light, located close to the winter

Milky Way, which is fainter than the southern one, the values given

in this table are in all probability too large for small galactic

latitudes. However, as was indicated above, cosmic absorption is

barely able to decrease the first term by more than 25%. Making

such a reduction, we ootafn the following values of the galactic
reduction for several zenith distances.

/259

1 b).3--L4 (b)PSeCz-[-0"355 _ (z, z,) secz (1 -- -_ sin 2

For large galactic latitudes, the correction remains almost unchanged.

Thus, the brightness of zodiacal light can be reliably derived only

at a sufficient distance from the Milky Way. In this respect, October

TABLE 39

70 ° 1.(

75 ° 0.!

80 ° OA ;

I0 o

0.7_

0.69

0.60

23 °

0.55

O. 52

0.46

3 :}o

0.41

0.39

0.37

_0°

0.30

0.30

0.29

50"

0.24

0.24

0.25

0.20

0.21

0.23

70 °

0.19

0.20

0.21

80 °

0.19

0.19

0.20

8O _

0.18

0.19

0.20
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observations of zodiacal light in 1945 are more reliable. _260

It was shown above that the apparent brightness of zodiacal

light around the pole can be assumed to be 0.2 at the maximum. There-

fore, the ionosphere component at this point is

Co = Js -- 0.38 -- 0.20,

where Js is the total observed brightness around the pole. If we

know C O , we can find the ionosphere component at any other point

in the sky. This quantity, as well as the galactic reduction at the

same point, must be subtracted from the observed brightness of

zodiacal light. The remainder represents the apparent brightness of

zodiacal light, which must still be corrected for atmospheric absorp-

tion.

The latter operation entails significant difficulties. There is

no basis for applying the general formula of Bouguer to such an exten-

ded object as zodiacal light. On the other hand, a rigorous calcula-

tion of troposphere scattering in the given case is impossible,

since it requires a knowledge of the entire isophote system, which

must still be determined.

This problem is quite complex and merits a detailed analysis.

At the present, we shall confine ourselves to only approximative

considerations. First of all, it can be stated that the brightness

of the sky around the pole does not evidence a systematic increase as

the zodiacal light rises. On the contrary, this quantity remains

unchanged almost up to the beginning of dawn. This shows that the

troposphere component of zodiacal light is, in any case, small for

all of its bright portions. On the other hand, if zodiacal light

were to cover the entire sky uniformly, then the correction for the

troposphere would have the following form:

which is equivalent to a significant increase in p. In addition, if

the brightness in it increased toward the horizon independently of

the azimuth - similarly to an increase in the ionosphere brightness - J265

then the desired correction would be (p + 0.03) sec z. In our case,

this correction must differ to a lesser extent from the customary

formula of Bouguer. Due to this fact, we can correct the apparent

brightnesses obtained by the factor pl sec z assuming that Pl = 0.82

in 1945 and Pl = 0.87 in 1946 - i.e., by 0.02 more than the assumed

transmission index. The somewhat arbitrary nature of this reduction

is mitigated by the fact that the observations in the largest portion

were carried out at the same almucantar.

By way of an example, let us present the observations in reduced

form for October 9 - I0, 1945, and September 6, 1946. The first line
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TABLE 40

9--10 Oct. 1945

J . . . 2.34

I(D---'.... 84

1_ ....+3
z ..... ,55

b ..... 23

gal. red.. 0.69
aTM .... 0. 951

Japp • • • O. 701
J_ .... 0.95]

f ..... 2.101

t®--t . . . 8;

2.04

79.3

13

55

32
0.49

0.95

0.60

0.81

2.42
69

[3 .... --49. I

z ..... 74 I
b ..... 2_

gal. red . . 0.52I
aru .... 1.031

Japp • • • 0.531
Jv .... 1.OOl

J ..... 1.92[

t®--t... 12'

p ..... -561
z ..... 7_

b ..... 3_,

gal. red.. 0.321
aTM.... 1.021

-18.5

'0.57

1.05i
0.80

1.49

il;i[
Japp • • • 0.58 0.60

Jv .... 1.32 1.36
s ..... 2.o512.32
to-t... 118 158 I
13..... -56 1-18 I
z ..... 78 178 I
b ..... 29 13o I
gal. red.. o.411 0.40j
aTM.... 1.02 I.02

• I
Japp • " • 0.62 0.90
Jv .... 1.40 2.041

1.7f

71

29

55

40

0.37

0.9fi

0.44

0.6C

2.84

60

.1.5

'4

;0

0.3_

1.0, _

1.4(

2.7_

2.21

1

19.,_

8

7

0.4_

1,0 _.

0.76

1.72

2.90

0

0
8

8

0.27

I .O2

1.61

3.65

1.98 2.5:

121 79
--42.5 --14._

67 67

30 18
0.48 0.75

1.09 1.0 c.

0.41 0.6 _.

0.64 ! .0_

2.90 2.41

59 J54

1.51 17

74 174

4;I t57

0.311 0.2_

].051 !.OZ

1.541 1.1_

2.881 2.11

3.001 2.5_

:" ' 45

--i.b i 17

78 I 78

40 i 62

0.291 0.2'_

1.021 1.02

1.691 1.29

2.65

67

35

0.42

1.09

1.06

1.65

2.28
50

26 i

74

62

O. 22[

1.051

1.011

1.881

2.14l

33

36

78

72
0.201

1.02l
0.921

2.2:

62

18

67

4g

0.2 _,

1.0!

0.8_

1.3 /

2.3C

28

54

78
63

0.22

1.0-_
1.08

2.4(3

2.881 2.39 2.18

ZO I 42 35 26

-- 18.5 37 55

7_ _ 78 78 78

48 I 66 74 63

0.27[ 0.22 0.21[ 0.22

1.091 1.02 1.02[ 1.02

1.59t 1.15 o.861 0.94
3.6of 2.60[ 1.951 2.13

1.93

57

36

67

57

0.24

1.09

0.60

0.94

_/261

gives the observed brlghtnesses obtained directly by reading the ]265

photometer wedge. Then follow the coordinates of the observational

points - longitude with respect to the sun, celestial latitude, zenith

distance, galactic latitude. Corrections are given in accordance

with these coordinates - gal. red. for the total stellar brightness; /266

"atm." for the ionosphere; and the apparent brightness Japp is ob-

tained, according to which the actual brightness of zodiacal light

outside of the atmosphere Jv is finally obtained (see Table 40).

The values of Jv are plotted on the graph along the ecliptic co-

ordinates, and isophotes are drawn along them which correspond to the
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Table 40 (continuation)

9--10 Oct. 1945

J ..... 2.251 2.3C 3.10

l®--l... 60 I 54 47

13...... 25.5[ -17 11
z ...... 78 I

b ..... 2u

gal. red . . 0.491

aTM.... ].02l

Japp . . • 0.741

Jv .... 1.681

J ..... 2.231

to--l... 55 I
[_ ...... 24.51
z ..... 7

b ..... 2

gal. red . . 0.44

aTM.... 1.02

Japp • • • 0.77

Jv .... 1.74

J ..... 2.09

t_)-t . . . 19
!_...... 58
z ..... 78

b ..... 30

gal. red . . 0.40
alM .... 1.0_'2

]app• • • 0.67
Jv .... 1.52

J ..... 1.93

to-'... Jo6
...... 58

z ...... 78

b ..... 24

gal. red.. 0.57
a T.',!.... 1.O_

Japp • • • 0.34
•/u .... 0.77

78 78

33 52

0.37 0.25

1.02 1.02
0.91 1.84

2.07 4.11

2.4£ 3.40

50 43

-16 --2

78 78

36 _0 '

0.3[ 0.26

1.0', 1.02

1.0_ 2.12

2.3_ 4.8

2.27 2.66

57 47

--32 --15

78 78

19 38

0.54 0.33

1.0-_ 1.02

0.7£ 1.31

1.5_ 2.97

2.2( 2.91

51 40

--29 --12.fi

78 78

24 ,t3

0.51 0.3C

1.0_ 1.0:

0.61 1.5_

1.3, < 3.6q

2.421

39
20

78

7O

0.21

1.02

1.19

2.70

2.94

43

2

78

55

0.24

1.02

1.68

3.80

3.2!

42

-I

78

53

0.2_

1.0:

2.0

4.5:

4.3

34

6

78

63

0.2

1.0

3.1

7.0

2. It 2.281

32 23.5 I

38.5 5

78 78 I

75 6

0.201 0.221

1.021 1.021

0.941 1.041

2.13] 2.361

2.571 2.07[

36 29

21.5 40

78 78

73 75

0.21 0.20]

1.0_ 1.02[
1.3_ 0.851

3.0< 1.93]

3.6_ 2.62 2.25
40 33 26

3.5 2.3 41.5

78 78 78

58 76 75

0.2_ 0.2( 0.2¢

1.0', I .0_ 1.02

2.4{ 1.4( 1.0_

5.4: 3.D 2.3_:

2.6' 2.21

27 20

25 44

78 78

i 81 74

i 0.2_ 0.21
1.0 1.0_9

1.4 1.0_

3.3 2.3 _.

/262

integral brightness values in the number of stars of the fifth magni- _266

tude per square degree. Attention should be called to the extensive

form of the different isophotes, which are in sharp contrast to the

apparent contour of the phenomenon.

Let us first examine the brightness change in zodiacal light

along the ecliptic. Let us read off the angular distances from the

sun of the different isophotes, which are given in Table 41.

It must first be stated that the absolute brightness of zodiacal 1267
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Table 40 (continuation)

I J ..... 2.34
l®--!... 47

.... --28
z ..... 78
b ..... 21

gal. red.. 0.51
arm .... 1.02

Japp • • • 0.81

]_ .... 1.8_

d ..... 2.33

re- . . . i2
p .... 55
z ..... 78

b ..... 63

gal. red.. 0.22
aTM.... ] .02

Japp • • • 1.09

.go, .... 2.45

2.20 2.52 3.2{

44 42 37
--24 --20 --11

78 78 78

27 32 37

0.44 0.38 0.34

1.02 1.02 1.02

0.74 1.12 1.90
1.68 2.54 4.30

2.10 1.90

: 6 --14
64 77

78 78

54 33

0.25 0.37

i1.02 1.02
i0.83 0.51
! 1.86 1.1_

4.10 3.49

31 27

7 17

78 78

47 66

0.28 0.21

1.02 1.02
2.80 2.26

6.35 5.12

2.52

20

36

78

77

0.213

1.02

1.313

2.9,

6 Sept. 1946

J ..... 1.73

l®--t . . . 63,6

[_ .... 52.3

z ..... 51.2

b ..... 30

gal. red.. 0.56

arm ..... 1.12

Japp • • • 0.05
s,, ..... 0.06

J .... 2.P2

l®--'..'. 38.6

p .... ,50
z ..... 65

b ..... 45.6

gal. red.. 0.32
a r,',l.... 1.36

laW, .... 0.54
J_ .... 0.74

1.89

65.6

38.2

51.2

25

0.67

1.12
0.10

0.12

2.25

48.9

33.3

65

37 °

0.43

I .36

0.46

0.61

2.50

72.1

22.5

5}.2
14

1.01

1.12

0.37

0.46

2.70

56.6

16.7

65

24.6

0.62

1.36

0.72:

0.99

2.78

75.6

15.,5

51.2

8

1.22

1.12

0.44

0.55

2.96

61.5

13.8

65

O. 84

1.36

0.76

1.04

2.49 2.34

80.2 90.6

9.2 --3.0

51.2 51.2
1 --14

.52 1.01

1.12 1.12

--0.15 0.21

-- 0.26

3.71 3.10

65.9 72. I

1.3 --6.3

65 65

9' 0.5

1.Og 1.39

1.36! 1.36

1.27 0.35

1.74 _ o.4q

2.2C 2.14 2.0

97.1 107.1 118.2

--7.6 .11.6--17._

51.2 51.2 51.2

--22 --30 --45

0.761 0.56 0.34
1.12[ 1.12 I.H

0.38 0.46 0.3_
0.47 0.57 0.4_

2.78 ! 2.53 1.98

78.21 85.9. 102.1

--13 --19 --28.4

65 65 65

--8.4 --17 --35

!.'I1 0.84 0.4_

1.36 1.36 1.3t_

0.31 0.33 1.17

0.42 0.45 0.23

light at the same angular distance from the sun in 1945 was approxl- 1267

mately 20% greater than in 1946. In view of the fact that the ob-

servations were performed under completely different conditions and

taking into account the indetermlnancy of our reductions, this dif-

ference cannot be regarded as completely realistic. The brightness

distribution in both cases was almost exactly identical. Small

deviations pertain only to the most far-removed and very weak portions

of the phenomenon, which can be barely distinguished on the over-all

sky background, and which are therefore observed with a large amount 1268

of relative error. The observed distribution can be compared with
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Table 40 (continuation)

;G--'- • • 17.61

[3 . . ... 69.4 I
z .....

b ..... 45.2 !

gal. red.. 0.32

arm .... ! .39

Japp .... O. 43

Jv .... 0.61]

J ..... 2.9,11

1o-t .... 5.91
,_ .... 65 i
z ..... 76.91

b ..... 5,t

gal. red . . 0.'.;6

arm .... 1.41

Japp • . ". 1.2"1
I v .... 2.31

g . . ° . o

1® -7 . . .

f_ ....

Z .....

b ..... 51.31 53 46

gal. red . . 0.29J 0.2_; 0.32
arm .... 1.451 l.'tf 1.45

Japp''' 0".821 0.74 1.06

Jz, .... 1.241 1.I'_ 1.61

J ..... 2.701 3.8_ 4.16

I®--:... 20.1 I 31.2 40.2

l_ .... 49.01 31.5 [ 14.0
z ..... 74 I 74 i 74
b ..... 57.1 I 50.6 [ 37.3

gal. red.. 0.261 o291 o,,
arm .... !.4_1 1.481 1.481

Japp • • • 0.961 2.11 2.2,1

.... 3.43 I

Jv 1. 561 3.64

J ..... 2.141 2.41 2.861
27.6 35

53.7 [ 35.6

67 [ 6751.0 48.1

0.;8i 0.30
1.39] 1.39

0.74] I. 17

1.o41 1.6._
i

2.95 3.31! 4.60

11.6 22.6 31
50 t 32.4 14.5

26.9 76.9 76.9

61.5 59 45
0.2tl 0.24 0.3_

1.I11 1:41 1.41
1.271 1.6: 2,8,1
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the theoretical distribution under the assumption that the density

of meteoric matter in space changes in a manner which is inversely

proportional to the distance from the sun, and also to the spherical

scattering indicatrix. The form of the indicatrix, however, is of

no significant importance at angular distances of 30 ° - 70 ° from

the sun. Under these assumptions, the brightness of zodiacal light

must change proportionally to [I - cos(Z - Zo)] -I, which is expressed

by the continuous curve in the graphs, with the appropriate choice

of the proportionality coefficient.

As can be seen, the actual brightness changes somewhat more
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Table 40 (continuation)
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Figure 17

Isophotes of Zodiacal Light from Observations

on October 9 - i0, 1945.
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rapidly than does the theoretical brightness, although the difference _269

is insignificant for small angular distances. From the aspect of the



TABLE 41

1945

j267

Jv

i

2

3

4

5

7

8

9

6-7 Oct.

77 °

64

55

50

45

40

u_

32-33

7-8 Oct. 9-10 Oct.

84 °

62

52

44

37

85 °

67

58.5

49

42

35

1

15-16 Oct.

86 °

68

60

52

47

40

36

1946

Jv

0.5

i

2

3

5

7

8

5 Sept.

88 °

74

57

43

6 Sept.

87 °

69

58

50

42

35

8 Sept.

_u

70

59

48

38

31

theory for stationary distribution of meteoric matter, based on the

assumption of gradual disintegration of asteroids (see Chapter 8),

this difference can be explained by the addition of eliptical orbits

(the precise law of inverse proportionality to the distance is valid

only for circular orbits).

A more serious problem arises in connection with the form of

zodiacal light. As was shown above (Chapter 9), its isophotes can

be represented theoretically on the basis of our hypothesis for the

origin of zodiacal light, which leads to the following expression

for spatial density

D = f(r) e - k_i,,,

_/269
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Figure 18

Brightness of Zodiacal Light in the Ecliptic

Plane as a Function of Angular Distance from
the Sun in 1945.

/268

The expression f(r), which is identical for all planes, can be /269

determined on the basis of only one stationary condition. It is in-

teresting to note that the same expression f(r) is obtained for any

mechanism by which space is filled with cosmic matter when this

mechanism occurs externally - whether it is the disruption of periodic

comets captured by planets, the ejection of matter from asteroids, or

finally the slow and gradual deposit of dust particles which are re-

tarded by solar radiation.

Not one of these processes can explain the distribution of

matter outside of the ecliptic plane, without additional assumptions

concerning the very essence of the meteoric matter origin.

/270

It was shown above that the theory of asteroid disintegration

makes it possible to construct zodiacal light isophotes (Chapter 9).

However, these isophotes are too constricted, if it is assumed that

dust leaves the asteroid surface without an initial velocity. It is

interesting to note that the factor determining the density of

zodiacal matter outside of the ecliptic

(_ is the angle of inclination) is obtained from the known distri-

bution of asteroid orbits, but the value of k is approximately 3

times smaller than is required in order to explain the zodiacal

light isophotes.

This could indicate that particles leave the asteroid surface
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Brightness of Zodiacal Light in the

Ecliptic Plane as a Function of Angu-

lar Distance from the Sun in 1946.
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with a certain initial velocity, and also that the orbits of small

asteroids, which comprise the basic material for meteoric matter, are

inclined at rather large angles on the average. As was shown pre-

vlously (Chapter 6), the region of the asteroid band must also abound

in a fine dust, since under all pulverization conditions the greatest

amount of matter must accumulate in this band. This explains the

phenomenon of the zodiacal band. It can thus be assumed that bright

cones of zodiacal light are constantly produced from this band, which
is faint due to its distance from the sun and from the observer.

In conclusion, we must point out certain discrepancies which

must be clarified by future observations.

The Nothern Zodiacal Light does not extend very far from the

ecliptic and barely reaches the celestial pole, where the zodiacal

component is very small, in any case. This small brightness is in-

compatible with the isophotes of the zodiacal light cones, which

are obtained after introducing all of our reductions. The discrepancy

is due to the fact that the zodiacal cones visibly extend too far

to the north. This cannot be caused by a general increase in the

sky airglow with latitude (latitudinal gradient) which, according to

our results, is not of significant importance. The impression is

gained that there is additional airglow close to the horizon, which

is connected with the sun and which appears only when the sun drops

slightly below the horizon about 20 °, and even somewhat more. It

has been generally acknowledged up to the present time, however,

]270
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that twilight has completely terminated when the sun drops below

the horizon by 16 °, and in any case by 17°. This entails a serious

problem of a theoretical and observational nature. It appears that

photometric comparisons of the northern zodiacal light with both of

its cones, followed by a spectroscopic investigation of them, can

best serve to clarify this problem.

MOSCOW

January, 1947
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